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The Bioinorganic Chemistry of Copper-Containing Systems: from Type-3 Systems 
Pertinent to Alzheimer’s Disease to Mononuclear Hydrolysis Involved in Biological 

Development 
 
 

Giordano F.Z. da Silva 
 

 
ABSTRACT 

 
 

Although transition metals are essential for life, misregulation of redox-active 

metal uptake, delivery, storage, and excretion has been linked with a series of 

neurodegenerative disorders.  Alzheimer’s disease (AD) is considered an epidemic and is 

the most widespread of all forms of dementia.  Copper ions found in large concentrations 

localized in amyloid-β plaques in the brain of AD patients have been linked with the 

generation of reactive oxygen species which are suspected to be the culprits leading to 

neuronal cell death.  Herein a series of mechanistic and spectroscopic studies elucidate 

the chemistry about the metal-centered oxidation of biomolecules, including 

catecholamine neurotransmitters and some analogues by copper-complexes of amyloid-β 

peptide.  

Transition metals can also be useful tools for characterization of metalloproteins 

due to their unique chemical and spectroscopic features.  Herein a series of studies of the 

native Zn2+ and Cu2+-derivative of recombinant Blastula Protease 10 (BP10) from the sea 

urchin Paracentrotus lividus are presented in order to elucidate its catalytic mechanism, 

with the use of enzymology, metal substitution, and electronic absorption spectroscopy. 
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CHAPTER I. COPPER-DIOXYGEN IN METABOLISM AND CATALYSIS 

  

 

I. BACKGROUND 

 

The interaction of transition metals with oxygen (O2, or dioxygen) is of 

paramount importance in biological systems.  The metal-O2 interaction is ubiquitous in 

metabolic pathways of aerobic organisms on the earth’s crust and it is fundamental to 

homeostasis by serving as catalysts in redox reactions as well as for the bidning and 

delivery of O2 in aerobes.1  For these purposes, iron and copper are the predominant, 

albeit not the only, transition metals utilized in metalloproteins and metalloenzymes.  

Classic examples of iron- containing O2 transport metalloproteins include hemoglobin,2 

myoglobin,2 and hemerythrin,3 while redox-active non-heme iron metalloenzymes 

involved in O2 metabolism include methane monooxygenase,4 and protocatechuate 3,4 

dioxygenase.5  Copper is also well represented in the area of O2-binding with 

hemocyanin6 being the classic example, while catalytic copper-centers include 

tyrosinase,6 catechol oxidase,7 and galactose oxidase.8   
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Of particular interest in the recent years has been the nature of copper-O2 centered 

chemistry in metalloenzymes.  Several research groups have pursued spectroscopic 

characterization, crystallography, and biomimetic studies of metalloproteins that contain 

copper and can interact with O2 through direct binding or for activation of O2 in chemical 

reactions like hydroxylation and oxygenation.  These copper metalloenzymes are 

collectively termed Type-3 copper proteins attributed to the magnetically coupled di-

copper center.6 Although the topic in this review is primarily from a health/disease or a 

more medicinal perspective, the lessons learned from the investigation of the chemistry 

of Type-3 copper proteins have some overlap with the area of neurodegeneration 

involving activated or reduced forms of O2.  The focus of this chapter will be the parallels 

of what is known about the chemistry of Type-3 copper oxidases and how it may relate to 

Alzheimer’s disease. 

The ability of binuclear copper centers in proteins to bind O2 for transport and to 

use copper-O2 (CuO2) as the catalytic center for O2 activation has provided a wealth of 

understanding in both experimental and theoretical chemistry. Understanding the 

interaction of O2 with copper has been an intense area of study for bioinorganic chemists, 

both toward the native molecules and in biomimetic systems.9,10  Research in this area 

has utilized the spectroscopic properties of the Type-3 copper proteins, as well as crystal 

structures when available, to serve as templates toward the synthesis of small model 

systems that allow the interactions of copper with O2. Typically, the short-lived CuO2 

intermediates cannot be well resolved in the native systems either due to influence of the 

size of proteins in spectroscopic techniques that rely in magnetic resonance or because 
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crystal structures cannot offer a fast enough process in order to catch the transient species 

responsible for catalysis.  Even in small biomimetic compounds, the unstable formation 

of CuO2 intermediates has forced the determination of the structure of reactive 

intermediates at very low temperatures.11  In fact, a significant effort has been made 

toward a systematic approach to synthesize biomimetic systems to approximate the 

chemical and spectroscopic properties of Type-3 copper proteins.  The choice of ligands, 

bridging ligands, solvent systems, and temperature can play a significant role in the 

elucidation of both redox-activity of model systems and their electronic properties that 

give rise to the now typical spectroscopic fingerprints of Type-3 oxidases.  

In Type-3 metalloprotein biomimetic systems, the coordination environment 

around the metal ion is typically constituted of strong donor ligands such as the nitrogen 

atoms of pyridines that can mimic the histidine residues which have been proposed to 

assist the stabilization of metal-oxygen intermediates for electrophilic substitutions and 2-

electron oxidation chemistry. The stabilization of highly electrophilic/nucleophilic CuO2 

intermediates is also assisted by a large hydrophobic environment.  However, several 

factors can influence the reactivity of these compounds; in essence, any alteration on 

solvent, and coordinated (and bridging) ligands will change the reactivity of these 

biomimetic compounds.12  The now classic example of biomimetic O2-binding copper 

complexes that mimic the spectroscopic and chemical properties of their natural 

templates can be traced back to the efforts of Nobumasa Kitajima, Kenneth D. Karlin, 

and Edward I. Solomon from the late 1980’s to today.13-16 
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Although seemingly unrelated, the knowledge gained from investigating copper-

O2 interactions in metalloproteins and enzymes and their biomimetic analogues, may 

yield significant insight into the possible mechanism for metal-centered generation of 

reactive oxygen species (ROS).  These ROS are generated at a metal center and may 

either diffuse away and cause damage to redox-sensitive biomolecules or remain bound 

to the metal and itself be an efficient redox catalyst. The common ground between these 

two areas of research then can be elucidated as the copper-O2 interaction. From the 

detailed spectroscopy of biomimetic compounds and their protein templates, we have a 

library of diagnostic patterns to elucidate the nature of interactions of redox-active metals 

and O2. From the detailed mechanistic investigation of the chemistry catalyzed by the 

metalloproteins and their model compounds we are now well aware of what reactivity 

can be expected from different conformations of reactive CuO2 intermediates. In recent 

years, a darker side of copper-O2 chemistry has surfaced in biological studies.  As 

research in the areas of cancer, apoptosis, diabetes, heart disease, and neurodegenerative 

disorders becomes more focused and detailed, the metal-centered generation of ROS has 

become a common theme.  In fact, much of the focus has been placed on the nature of 

ROS rather than the interaction of the redox-active metal center with the ROS.  These 

ROS are the radical and reduced forms of oxygen that although present under normal 

metabolic conditions, could potentially damage oxidizable moieties in their environment 

if not properly regulated due to the much higher oxidation potential of ROS compared to 

O2.  ROS alone are able to damage every major type of biological molecule, including 

membranes (by peroxidation of lipids),17 proteins (by oxidation of certain residues and 
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nitration by nitric oxide),18 DNA (by destruction of the structural stability of the double 

helix as ribose is oxidized),19 and smaller molecules such as neurotransmitters.20  

According to recent studies, OH•, O2•–, and H2O2 have been assigned as the culprits in 

several types of neurological disorders, with a large number of research groups focusing 

on the role of ROS in the etiology of Alzheimer’s disease (AD).21  However, as chemists 

further investigate the pathway of ROS generation and the fate of such molecules, it 

becomes more evident that a redox-active metal is necessary in order for the damaging 

and often lethal chemical imbalance that is caused by ROS (E° = -300 mV for the one 

electron reduction of O2) to achieve its full neurodegenerative potential; in other words it 

is the metallo-ROS interaction that appears to be the culprit in oxidative stress that leads 

to neurodegeneration, not ROS alone.  Recent observations demonstrate that although 

oxygen radicals and oxidation agents like H2O2 cannot achieve high enough 

concentration in order to be the sole culprits in the neuropathology of AD due to inherent 

ability of organisms to cope with this oxidative stress, the presence of a metallo-ROS can 

form a very potent redox catalyst.   

Alzheimer’s disease is one of several neurodegenerative disorders affecting a 

large percentage of the population.  An estimated 3 million individuals in the United 

States suffer from the slow, yet aggregate symptoms of AD. The number is expected to 

double by the year 2030.22  The progressive nature of AD that has even been called an 

epidemic,23 has also dire effects on the families of those diagnosed with the disease.  The 

AD patients are “memory timers”, bringing recognition of events and people around them 

slowly to extinction with each passing day.  With the gradual, yet always progressive and 
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degenerative nature of AD, families are placed under considerable stress while caring for 

their loved ones and coping with the loss of their existence in the minds of those afflicted 

by AD.  To that end, numerous scientific studies, amounting to tens of thousands, have 

been published, reflecting the interest in research funding and efforts toward 

understanding the neuropathology of this disease. 

Largely, AD neuropathology concerns the interaction of a 40-42 amino acid 

peptide splice fragment from the ubiquitous apolipoprotein (or amyloid precursor protein, 

APP) with a number of intracellular components.   These amyloid-β (Aβ) peptides are 

generated by the cleavage of APP by α, β, and γ secretases.24  Aβ in the form of insoluble 

plaques contains up to mM amounts of Zn2+, Cu2+, and Fe3+ in the neocortical region of 

the brain.25 However, the cause/effect connection of the metallo-Aβ plaques with AD is 

still under debate.26  Aβ has been the elusive culprit in AD studies with results ranging 

from free-radical generation to disruption of mitochondrial cell membrane potential, all 

hallmarks of oxidative stress.  Formation of Aβ plaques in the presence of metals has 

dominated a large percentage of investigations in correlating the physiology of AD with 

the metal chelating event (Aβ serving as the ligand) and generation of ROS.  The 

subsequent observations of chemical events once metallo-Aβ is formed have offered 

numerous hypotheses into the oxidation stress proposed as one of the main causes of AD.  

Herein we present a compendium of observations that bring together efforts in the area of 

metal-O2 chemistry from a catalysis perspective to better understand what role O2 and its 

reduced forms may have in disease. Relating the neuropathology of AD with possible 
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metal-centered pathways is a recent area of focus that help clarify the homeostatic 

generation of ROS and the possible effects of non-homeostasis ROS generation. 

 

II. METABOLIC GENERATION OF ROS 

  

Electron donors in the tricarboxylic acid cycle in mitochondria (i.e. NADH and 

succinate) to O2 are responsible for the generation of ATP for upkeep of cellular 

processes.  Electron transfer (ET) processes rely on a series of molecular complexes to 

ensure that the transduction of oxidative energy and that the use of proton energy in ATP 

synthesis is carried out efficiently.  The complexes that are functionally connected to 

mitochondrial energy transduction include: Complex I (NADH:ubiquinone oxido-

reductase), Complex II (succinate:ubiquinone oxido-reductase), Complex III 

(ubiquinol:ferricytochrome c oxido-reductase), Complex IV(ferrocytochrome c:oxygen 

oxidoreductase), and Complex V (ATP-synthase).1, 27  

In the inner mitochondrial membrane, within Complexes I, III, and IV the energy 

transduced from ET is conserved by coupled proton translocation that is responsible for 

the generation of a membrane electrochemical potential of protons used in ATP 

synthesis. The whole ET system is reversible and an electron flow can be generated 

against the current.  However, cytochrome aa3 in Complex IV and O2, or the final step in 

ET is irreversible, shifting the equilibrium in the system toward ATP synthesis.  

Cytochrome aa3 retains all the partially reduced oxygen intermediates bound to its active 

sites until the O2 itself is completely reduced to water.  However, through auto-oxidation 
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that can affect their reduced forms, other elements in the mitochondrial ET chain like 

ubiquinones and the cytochrome b family could transfer the electrons directly to O2, but 

do not retain the partially reduced O2 intermediates in their active sites until the O2 is 

completely reduced to water. Because O2 accepts only one electron at a time, the 

superoxide radical (O2•–) is released.  In the cytochrome b family, it is noteworthy that 

cytochrome b566 is closely involved with the processes of energy transduction in Complex 

III, wavering continually between a very low potential state of approximately  –30 mV 

and a very high one of approximately 245 mV. The low potential of cytochrome b566 

could play a primary role in the formation of mitochondrial O2•– because of an increase in 

its redox potential inhibiting the univalent transfer of electrons to oxygen.  Therefore, 

electron leakage from the cytochrome b566 would appear to be a real possibility which can 

thus bring about a continuous release of oxygen free radicals. During aging, the 

increasing amounts of these radicals that manage to escape the local defense mechanisms 

(e.g. scavengers, electron-trapping agents, etc.) may lead to multiple changes in the 

chemical and physical state of the membranes. As a matter of fact, superoxide 

generation28,29 is significantly greater in the brain mitochondria of aged rats rather than 

young rats. This seems to be related to the fact that, with the exception of cytochrome aa3 

in Complex IV, the metabolic levels of the electron carriers does not undergo significant 

change with aging. However, the decrease in either the amount of cytochrome aa3 or its 

catalytic cytochrome oxidase activity (COA)30-34 in synaptic mitochondria from some 

cerebral regions (frontal cortex, parieto-temporal cortex, hippocampus, cerebellum, 

etc.)35,36 may account for the finding that stoichiometric calculations show aging is 
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related to an increase in the percentage of ubiquinones and cytochrome b family. 

Although this increase is not dramatic, relatively it does explain how electrons can 

"escape" the ET sequence from electron donors to O2. The Km for cytochrome c is 

constant in aged rats but the Vmax decreases, suggesting that the COA activity is not 

related to the functional integrity of mitochondria accompanying senescence.35 Moreover, 

the COA activity drops significantly less in cortical synaptic mitochondria from old rats 

fed a hypocaloric diet,37 and declines in the homogenate of old rat cerebral cortex38 and in 

insect mitochondria.39          

Electrons can leak from the energy-transduction sequences even in young 

animals, indicating that the formation of superoxide radicals could be associated with the 

normal process of mitochondrial respiration.40 The production of these radicals causes 

cell damage because of the dismutase reaction in which H2O2 is formed and which, with 

the involvement of low-molecular-weight iron and copper complexes, leads to the highly 

dangerous hydroxyl radical.  The catalytic activity of Complex IV (COA activity) is low 

in three cortical areas but not in putamen and hippocampus of AD patients compared with 

age-matched controls.41,42  There is no correlation between the changes in COA and those 

of other marker mitochondrial enzymes, such as glutamate dehydrogenase and citrate 

synthase, leading to the conclusion that the decrease in COA activity is not related to the 

loss of mitochondria.41 The decrease in COA activity in cortical areas and in the 

hippocampus from AD patients43,44 suggests a primary defect of Complex IV, resulting in 

more O2•– released. A specific decrease in COA in the platelets of AD patients has also 

been reported45 but not confirmed.46  COA is heterogeneously distributed in the cerebral 
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spinal fluid (CSF).47  Expression of mRNA for COA in normal human and monkey brain 

is high in those regions which are most vulnerable to AD pathology and is particularly 

reduced in the same regions from AD patients.48, 49 In the mid-temporal gyrus, but not in 

the primary motor cortex, of AD patients there is a 50-65% decrease in the mRNA levels 

of the mitochondrial DNA (mtDNA)-encoded COA subunits I and III.50 However, the 

mitochondrial-encoded 12S ribosomal RNA (a mitochondrial transcript) does not change, 

suggesting that the observed reduction of COA I and III mRNA is not due to loss of 

mitochondria but to a specific alteration of transcriptional regulation. A behavioral study 

in rats treated with the selective sodium azide COA inhibitor showed significant 

inhibition of a low-threshold form of hippocampal long-term potentiation and impaired 

spatial learning.51 This finding supports the theory that Complex IV alteration is 

somehow involved in the pathogenesis of AD and also raises the possibility of 

developing an animal model reflecting this aspect of AD provided it is specific.   

 

III. O2•– AND SOD  

 

Superoxide radicals are described as having considerable reactivity, short half-

life, and limited diffusion through membranes.  However, the latter property has been 

questioned, as these radicals can appear in the brain extracellular space.52,53 O2•– has a 

dual effect54 where it may help protect against infectious microorganisms, but they can 

also be harmful as it participates in the formation of the very reactive hydroxyl radicals 

(OH•). Moreover, they can inactivate a number of useful enzymes, such as antioxidat 
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enzymes (catalase55 and glutathione peroxidase56), enzymes involved in 

neurotransmission (glutamine synthase57), in signal transduction (adenylate cyclase58), 

and in energy transduction (creatine phosphokinase59 and NADH dehydrogenase and 

ATPase60).  

In AD brain and fibroblasts there is evidence of partial uncoupling of 

mitochondrial oxidation and phosphorylation.61,62  Apart from the neurodegeneration 

induced by the impairment of energy metabolism, these oxidative abnormalities could 

contribute to the accumulation of cytoskeletal material.  Addition of an uncoupler to 

cultured fibroblasts from normal subjects causes the appearance of epitopes recognized 

by antibodies to paired helical filaments (PHF) and Alz-50 monoclonal antibodies,61 thus 

reproducing a pattern that is characteristic of fibroblasts from AD patients.63    

When O2 accepts an electron from a reducing agent, the primary product is O2•– 

that, in aqueous environments, is in equilibrium with its protonated form (•O2H). When 

O2•– and •O2H approach equal molar concentrations, spontaneous dismutation occurs, 

and H2O2 plus 1O2 (singlet oxygen)64 are generated. 

 

2 O2•– + 2H+ ↔ H2O2 + O2 (or 1O2)         Scheme (l) 

 

In scheme 1, O2•– can be converted into H2O2 catalyzed by superoxide dismutase (SOD) 

that is present in varying concentrations in neural cells. Thus, the conversion removes 

O2•– and prevents its direct toxic action as well as its interaction with metal ions to 

increase the production of hydroxyl radicals (Scheme 9 below). 
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The rate constant for SOD-catalyzed dismutation is approximately four orders of 

magnitude greater than that for the spontaneous dismutation of O2•– at physiological pH. 

For SOD protection/activity to work properly, it is absolutely vital for other enzymes 

(e.g., catalase, glutathione peroxidase, etc.) to convert H2O2 immediately into H2O, thus 

preventing the transformation of H2O2 by metal complexes into the highly toxic OH• 

(Scheme 9 below). In this last case, the intervention of SOD may be dangerous for 

neuronal cells in spite of what we expect as a beneficial biological scavenging of a highly 

reactive radical. 

The predominant two types of SOD are Mn-dependent and Cu-Zn dependent.  

The manganese-dependent (Mn-SOD) is located in the mitochondria, where it interacts 

with the O2•– leaking from the ET chain. The copper- and zinc-dependent (Cu,Zn-SOD) 

is located in the neural cytosol where it carries out a more general catalytic function.  

Auto-oxidizable electron carriers located on the internal mitochondrial membrane can 

generate O2•– which is enzymatically dismutated to H2O2. However, a few reactions 

catalyzed by some enzymes (e.g., monoamine oxidase and L-aminoacid oxidase) can 

produce H2O2 directly. Thus, H2O2 may be generated either as a direct product or from 

each of the various sources of O2•– by auto-oxidation of a variety of low-molecular 

weight molecules, as byproducts of various enzyme catalyses such as between xanthine 

and xanthine oxidase, and by the mitochondrial ET system. 

The hydroxyl radical is one of the most potent reactive metabolites produced in 

brain systems derived from O2.  This radical, O2, and OH– are all products in the reaction 

shown in Scheme 2 when H2O2 is directly reduced by O2•–:   
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O2•– + H2O2 ↔ O2 (or 1O2) + OH• + OH–  Scheme (2) 

 

H2O2 can cross cell membranes directly, whereas O2•– crosses cell membranes through 

anion channels. Although H2O2 cannot be classified as a radical because it does not 

contain unpaired electrons, it is still dangerous because it easily permeates cell 

membranes and can migrate from where it is first generated to other organic 

compartments. It can interact with the reduced forms of some metal ions (generally, Fe2+ 

and Cu+) and decompose into the highly reactive OH• and the OH–, according to: 

 

H2O2 + Fe2+ ↔ Fe3+ + OH• + OH–        Scheme (3) 

H2O2 + Cu+ ↔ Cu2+ + OH• + OH–        Scheme (4) 

 

The formation of OH• requires reduced forms of metal ions, such as Fe2+ or Cu+. The 

superoxide radical O2•– can then give rise to Fe2+ or Cu+ by reducing Fe3+ or Cu2+ 

according to: 

O2•– + Fe3+ ↔ O2 + Fe2+                                   Scheme (5) 

O2•– + Cu2+ ↔ O2 + Cu+                        Scheme (6) 

 

The reaction in Scheme (2) is slow at physiological pH and would require steady-state 

concentrations of the reaction partners, which are much higher than those found in 

cerebral mitochondria to account for detectable amounts of the highly unstable radical. 
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As shown in Schemes 3-6, metal ions (Mn+) accelerate the reaction in Scheme (2) by 

catalyzing two intermediate reactions: 

 

O2•–+ Mn+ ↔ O2 + M(n–l)+                                                   Scheme (7) 

M(n-l)+ + H2O2 ↔ Mn+ + OH• + OH–                                   Scheme (8) 

Overall: O2•– + H2O2 + ↔ O2 (or 1O2) + OH• + OH–          Scheme (9) 

 

In Scheme 9, O2•– reduces redox-active transition metals (Fe3+, Cu2+), and generates 

oxygen or singlet oxygen. The reduced form of the metal subsequently reacts with H2O2 

to produce the oxidized form of the metal, the hydroxide ion, and the hydroxyl radical. In 

view of the evidence that in neural systems Scheme 2 proceeds very slowly, the hydroxyl 

radicals are possibly produced in the presence of a redox-active metal. An additional 

mechanism by which OH• may be generated is supported by the observation that 

incubation of H2O2 with Fe2+ and iodide ions (I–) can generate a potent reactive molecule 

that is inhibited by scavengers of the hydroxyl radical (e.g., mannitol65 and ethanol66).  

Singlet oxygen63 is generated by the SOD in Scheme 2 or by the interaction with metal 

ions in Scheme 9 when one of the two unpaired electrons of O2 acquires sufficient energy 

to undergo spin inversion or both spin inversion and orbital transition.  There are two 

distinct forms of singlet oxygen, ∆ and Σ, which are dependent respectively on whether 

the excited electron forms an electron pair in the same orbital or remains unpaired in a 

different orbital. The ∆ form of singlet oxygen is more stable than the Σ form. Singlet  
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Reaction E° (V) 

O2 + e– → O2•– 

O2•– + e– + 2 H+ → H2O2 

H2O2  + e– + H+ → H2O + OH 

OH + e– + H+ → H2O 

O2 + 2e– + 2 H+ → H2O2 

H2O2 + 2e– + 2 H+ → 2 H2O 

O2 + 4 H+ + 4 e– → 2 H2O 

–0.33 

+ 0.89 

+ 0.38 

+ 2.31 

+ 0.281 

+ 1.39 

+ 0.815 

 
 

Table 1.1. Standard redox potentials for dioxygen species in water. 
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oxygen is highly electrophilic and can react with electron-rich biomolecules such as 

tryptophan, methionine, and molecules containing unsaturated double bonds.   

The effect of physiological aging on brain SOD is controversial, though most 

reports describe some age-related decline, mainly of the Cu-Zn form68,69,70,71,72 probably 

related to the decline of SOD mRNA. However, other studies report no change of this 

form and an increase in MnSOD.73,74  Thus, it would appear that higher levels of SOD are 

beneficial and lower levels of SOD detrimental. However, if the activity of SOD is 

increased without a concomitant enhancement of the activity of the enzymes which 

dispose of H2O2 (i.e. glutathione peroxidase) and the concentration of reduced 

glutathione, then H2O2 accumulates and reacts with O•– and Fe3+ and/or reduced metal 

ions to form the very reactive OH•. Thus the imbalance between SOD and H2O2-

converting enzymes results in a toxic effect of SOD by OH• generation, inducing DNA 

fragmentation, protein denaturation, and activation of the autocatalytic process of lipid 

peroxidation.   

Down's syndrome (trisomy 21) has provided some interesting clues on the balance 

among SOD, ROS, and antioxidants. Human Cu,Zn-SOD is encoded by a gene located 

on chromosome 21 and Down patients have a 50% increase in the activity of this enzyme 

secondary to gene dosage effect.75 The increase in SOD, not accompanied by a 

concomitant adaptative rise in glutathione peroxidase,76 might induce oxidative damage 

to the CNS, including lipid peroxidation and this might explain some of the 

neurobiological abnormalities found in Down's syndrome, such as accelerated aging and 

AD-type neuropathology.  This is supported by the results in an animal model of gene 
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dosage effect in transgenic mice carrying the human Cu,Zn-SOD gene.77,78 Cu,Zn-SOD 

and its mRNA are preferentially expressed in the large pyramidal neurons of Ammon's 

horn and granule cells of the dentate gyrus, which are susceptible to degenerative 

processes in AD.79 Brain lipid peroxidation is also increased. In seeming contrast with 

this finding, increased Cu-Zn SOD in transgenic mice makes the hippocampus more 

resistant to the neurotoxicity induced by amyloid-β.80 

The levels of Cu,Zn-SOD protein and mRNA in the vulnerable hippocampal 

neurons of AD patients,81  their association with neurofibrillar degeneration (PHF),82 and 

the observation that the cell distribution of Cu,Zn-SOD mRNA in the human 

hippocampus is the same as amyloid mRNA83 suggest that high levels of enzymes for 

ROS decomposition are needed to remove excess superoxide radicals which indicate that 

ROS contribute to the degenerative processes leading to neuropathology in AD.  Cu,Zn-

SOD activity is also upregulated in the temporal cortex and nucleus basalis Meynert84,85 

and in the fibroblasts of AD and Down patients.86 Cultured skin fibroblasts from both 

familial and sporadic AD patients are more susceptible to ROS-induced damage then 

from age-matched controls.87 Finally, high immunoreactivity for SOD and catalase in the 

AD brain is associated with some neurofibrillar tangles and senile plaques.88 This 

immunoreactivity is absent in tangle-free neurons of AD and all neurons of normal 

control brains.   
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IV. METAL-BIDING TO Aβ AND STRUCTURE OF THE COMPLEX 

 

 The primary step in understanding metal-centered chemistry is the elucidation of 

the coordination of metal ions in its complexes.  The geometry of metal complexes is 

often the determinant of reactivity.  Once it was determined that transition metals could 

bind to Aβ from analysis of isolated plaques,89 more detailed investigation of the nature 

of the metal-Aβ interaction followed.  Through the use of competitive binding in a pH 

gradient column chromatography, Cu2+, Ni2+, and Zn2+ were determined to tightly bind to 

Aβ1-42; shorter fragments (Aβ1-16 and Aβ1-28) could also be retained in the metal-chelate 

column but did not bind as tightly.90  Based on the pKa of 6.1 determined from the pH 

gradient elution, His residues were suggested as the ligands responsible for metal-

binding.  Further pH dependent binding studies using quantitative precipitation and 

turbidity revealed that Cu2+ can induce aggregation of Aβ1-40 and Aβ1-42. Chemical 

modification of His residues in the peptide to N-carbethoxyhistidine extinguishes the 

metal-induced aggregation.91  These results indicated that His residues were important in 

metal binding, but did not provide insight into geometry nor the affinity of Aβ toward 

transition metals.  Quantitative precipitation studies suggested that Cu2+ binds with an 

attomolar dissociation constant to Aβ1-42.92 This very low Kd, if correctly measured, 

would suggest that Aβ could actually remove metal from hemes, some of the tightest 

binding ligands in biological systems.  This result however, erroneously explained the 

metal-bidning because the combination of multiple molecular events in terms of 

euqilibrium can yield such a low metal-dissociation constant.  Since quantitative 
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precipitation measures both the metal affinity to Aβ and also the affinity associated with 

peptide aggregation, the attomolar constant is thus a combination of different constants 

for the two processes that would not be quantified individually until chemical93 and 

spectroscopic94 methods were used to directly measure metal-peptide interactions in 

solution.  Both methods yielded Kd for metal-binding in the µM range for Aβ1-16, Aβ1-

20,93 and Aβ1-28.94  

 In order to further elucidate the location of metal-binding in metal-Aβ complexes 

resonance Raman was employed to directly observe metal-peptide interactions.97 The 

Raman spectra demonstrate that three His residues in the N-terminal hydrophilic region 

provide primary metal binding sites and the geometry of the metal-Aβ complex is 

correlated with the metal binding mode. Zn2+ binds to the Nε atom of a His imidazole 

ring and the peptide was suggested to aggregate through intermolecular His(Nε)-Zn2+-

His(Nε) bridges.  The Nε-metal ligation also occurs in Cu2+-induced Aβ aggregation at 

mildly acidic pH.91  At neutral pH, however, Cu2+ was shown to bind to Nδ, the other 

nitrogen of the His imidazole ring, and to a deprotonated amide nitrogen of the peptide 

main chain.95  The studies using electronic absorption spectroscopy and 1H NMR 

techniques have also shown the nature of the metal-Aβ interaction.93  The electronic 

spectrum of Cu2+-Aβ1-20 shows a typical tetragonally distorted octahedral environment 

that is consistent with many Cu2+ complexes in solution. Co2+ as a paramagnetic shift 

reagent in 1H NMR experiments revealed that three His resides coordinate all Nε 

nitrogens from the imidazole rings of His6, His13, and His14.  The results of the NMR 
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study also revealed that neither Tyr10 nor the N-terminus bind to the metal as was 

previously suggested.95-97 

 Through the use of CW-EPR techniques and line broadening observations in 1H 

NMR experiments, a model was suggested for the formation of Aβ dimers that resembled 

the structure of the active site of Cu,Zn-SOD.96  The suggested structure yields the 

metal:peptide stoichiometry of 1:1 and that two metal metal centers can be bridged 

through a third His residue, suggested to be His6.96  These results were further confirmed 

by using chemically modified (methylated) His residues and CW-EPR.98  The broadening 

of the EPR spectrum was proposed to be due to antiferromagnetically couple Cu2+ that 

could only arise from a bridging ligand interaction or a close proximity of two metal 

centers.  However, the distinct features of Cu,Zn-SOD EPR are well known99 which do 

not resemble those of the CuAβ complexes.  Indeed, the possibility of bridged metal-

centers in CuAβ complexes is not preposterous which can be reasoned as an OH-bridged 

or even phosphate-bridged Cu centers (being that PBS is the preferred buffers in most of 

the experiments cited).  The interpretation that the broadening of EPR signals in CuAβ 

samples is likely due to the aggregation of the metallopeptides in solution and not 

because of magnetic coupling, since the metal-induced aggregation of Aβ is a well known 

phenomenon.100-103  

 Although the metal-binding properties of Aβ have been widely studied,25 

questions about the correct stoichiometry were until recently not clarified.  Recent studies 

using a number of different physical methods, ranging from 1H NMR to fluorescence and 

kinetics, have elucidated that each Aβ monomer of varying lengths can only bind one 
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metal.93,94,104,105  Recent theoretical studies have shown that the seeds for dimerization 

occur between residues 16-22, causing β-sheet formation in smaller fragments that can 

range from dimmer to 16 peptides per fibril.106,107  It is thus possible for two individual 

metal centers to be close enough to each other due to dimerization and show binuclear 

metal-centered catalysis. Such structural motif may well explain the redox chemistry 

involved in etiology of AD. 

 

V. GENERATION OF ROS BY METALLO-Aβ  

 

The cytotoxic effects of Aβ, which accumulates in the brain in AD, have been 

studied extensively.108  Early studies109 suggested that the aggregation state of Aβ is 

related to its toxicity. It was shown that freshly solubilized Aβ exhibited little toxicity, 

whereas Aβ that had been aged for 7 days (forming aggregates in fibrillar states) was 

cytotoxic.109 However, the precise molecular mechanism by which Aβ mediates cell 

death has remained a matter of considerable dispute. There is general agreement that the 

production of ROS (see section II) and the influx of calcium ions into cells121 are both 

involved in toxicity, but it is still unclear how the generation of ROS might be related to 

Aβ. One possibility is that the aggregated peptide itself may be able to produce ROS 

directly in the forms of free radicals or H2O2.110,111   

It is generally accepted that Aβ needs to be in aggregated or partially aggregated 

states before it becomes toxic to cells. However, there is still no clear consensus on the 

precise nature of the toxic form of the peptide. Dimers, soluble oligomers, protofibrils 
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and annular protofibrils have all been implicated in amyloid toxicity.112-117 Furthermore, 

it is becoming more evident that not all amyloid fibrils are toxic to cultured cells. 

Recently a synthetic peptide corresponding to amino acid residues 1-15 of Aβ protein 

(Aβ 1-15) was shown to form amyloid fibrils in vitro that are completely non-toxic to 

cells, even at high concentrations.118 Some forms of synthetic Aβ are also reported to be 

non-toxic,119 as is the Aβ peptide mutant that contains a norleucine in the place of 

Met35.120 This leads to yet another area of research that is ongoing and still trying to 

elucidate which forms of amyloid are toxic. What underlying molecular structures and 

mechanisms can explain why some amyloids are toxic, whereas others are not. 

Various other hypotheses have been put forward to explain the cytotoxic effects 

of Aβ in addition to the direct production of ROS from the peptide, including the 

formation of ion calcium channels in cell membranes by Aβ,121 interactions between Aβ 

and specific cell surface receptors, such as the RAGE (receptor for advanced glycation 

endproducts) or scavenger receptors,122-124 interactions between Aβ and intracellular 

target molecules such as ERAΒ (endoplasmic reticulum Aβ binding protein),125 and non-

specific intercalation of aggregated forms of Aβ into membranes.126 These various 

interactions may not be related to the idea that the most important aspect of the toxicity of 

Aβ is due to its ability to generate ROS directly once bound to a redox-active metal. The 

toxic process could be the result of a combination of binding and/or attachment of Aβ 

aggregates to cell components, followed by the induction of oxidative damage.   

According to the oxidative stress hypothesis, a spontaneous shower of Aβ-derived 

free radicals is produced upon incubation of Aβ in vitro, and it is this phenomenon which 
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rendered the cytotoxic properties of Aβ.111  Three main pathways can lead to the 

formation of free radicals from organic molecules: photolysis, thermal scission, and one-

electron redox reactions.  Mechanical stress would be a fourth possible route that may 

apply in some special cases. Of these, photolysis is not relevant to neurodegenerative and 

amyloid diseases. Thermolysis of most chemical bonds requires temperatures above 450 

°C with the exception of peroxides and azo compounds. The temperature at which 

peroxides undergo unimolecular scission varies with the class of peroxide but can be 

between about 50 and 150 °C.127,128  Likewise, nitrogen can be eliminated from certain 

azo compounds (general structure R-N=N-R) over a similar temperature range.129,130 

However, neither of these classes of bond is present in the parent Aβ peptide molecule. 

Perhaps the most important redox assisted bond scissions involve a metal ion that readily 

undergoes a one-electron transfer with one of the best known examples being the Fenton 

reaction: 

Mn+ + H2O2 → M(n+1)+ OH• + OH– 

Metal assisted homolysis reactions can take place at much lower temperatures 

than the corresponding unassisted reaction. While such reactions in peptide molecules 

cannot be totally discounted at 37 °C, they do not provide an obvious route to the 

spontaneous generation of peptidyl free radicals from Aβ. However, it has been suggested 

on purely theoretical studies that peptidyl free radicals might be generated from Aβ by a 

mechanism involving mechanical stress, i.e physical contact among metallo-Aβ 

monomers in the plaque.131   
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Electron paramagnetic resonance spectroscopy (EPR) is the preferred technique 

for the detection of free radicals and geometrical states around paramagnetic transition 

metal ions with unpaired electrons. EPR is highly sensitive and interpretation of the 

hyperfine structure associated with each spectrum allows the electronic nature of the 

radical to be established. However, the high reactivity and short life-time coupled with 

low steady-state concentrations of nearly all radicals prevent their direct detection in most 

cases. A simple experimental technique that is coupled with EPR is to employ spin-

trapping, in which a reactive radical reacts with a nitrone or a nitroso compound to form a 

much more stable nitroxyl radical whose concentration rises well above the detection 

limit of the spectrometer. The selection of the appropriate spin-trap is important and 

depends upon the nature of the initial radical and on the objectives behind the 

experiment.  Choice of incorrect spin-traps may yield data that are ambiguous and 

misinterpreted (discussed below). 

 The suggestion that Aβ itself might spontaneously generate free radicals was first 

made in 1994 when EPR spectra were observed during 6 hour incubation of Aβ 1-40 at 

37 °C in phosphate buffered saline (PBS) in the presence of the spin-trap N-tert-butyl-α-

phenylnitrone (PBN).111 The observation therein and further EPR spectra employing PBN 

as a spin-trap132,133 led to the “molecular shrapnel” hypothesis. The main feature of these 

EPR spectra was a 4-line pattern, and such a pattern is not characteristic of a true PBN 

adduct. In a similar experiment, Tomiyama et al.134 observed a spectrum consisting of the 

superimposition of 3-line, 4-line, and 6-line patterns during the incubation of Aβ 1-40 in 

the presence of PBN in deionized water. Again, the 3-line pattern is not characteristic of a 
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true PBN adduct. Under conditions of good spectral resolution, PBN adducts, without 

exception, consist of a 6-line pattern.135 Subsequently, Dikalov et al.136 reported that they 

were unable to detect any EPR spectra following the 6 h incubation of Aβ 1-40 and Aβ 

25-35 with PBN. When these same peptides were incubated with a less pure sample of 

PBN they observed both 3-line and 4-line EPR spectra. These spectra were also observed 

in the absence of peptide, and were attributed to transition metal-catalyzed auto-oxidation 

of di-tert-butylhydroxylamine and N-tert-butylhydroxylamine, present as impurities 

within their sample of PBN. It was proposed that these impurities were converted to their 

corresponding nitroxyls, di-tert-butylnitroxide and tert-butylhydroaminoxyl. Further 

there is current evidence that Aβ and α-synuclein can generate ROS directly.118 The 

arguments presented herein could apply to proteins associated with some of the other 

protein conformational diseases mentioned above. 

In some recent publications Bush and co-workers have reported that Aβ 1-40 

forms H2O2 in the presence of both copper and iron and can reduce Fe3+ to Fe2+ as well as 

Cu2+ to Cu+.110,137-139  The possible formation of H2O2 during the incubation of Aβ in PBS 

could provide some interesting insights into the chemistry outlined. First, H2O2 is a 

strong oxidizing agent and, if present, would certainly promote the hydrolysis of PBN. 

Secondly, the presence of both H2O2 and Fe2+ and/or Cu+ would lead to the formation of 

hydroxyl radicals by Fenton chemistry. It has been found that low concentrations of 

metals are present even in chelex buffers, and that significant amounts of metals are also 

bound to the peptide itself.140 If formed, the hydroxyl radical would be trapped by PBN, 

but the resulting adduct is unstable and is not directly observed in aqueous solution. 
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There is good evidence that at pH 7 and above PBN rapidly transforms into the tert-

butylhydroaminoxyl radical.141 This could also help to explain the origin of the 

characteristic 4-line spectrum of the tert-butylhydroaminoxyl radical obtained when Aβ is 

incubated in the presence of PBN.  Consequently, it may be that the very weak EPR 

signals of tert- butylhydroaminoxyl observed by Butterfield and  co-workers132,133,142-145 

and by Monji et al146,147 are resulted from the formation of H2O2 in the presence of low 

concentrations of Fe and Cu rather than the spontaneous formation of peptide-derived 

radicals. A second scheme involving reactions of 2-methyl-2-nitrosopropane (MNP) and 

PBN explains the origins of the 3- and 6-line spectra in the presence of Aβ and ambient 

laboratory lighting.  The possibility that H2O2 might be formed in the immediate vicinity 

of the peptide is interesting since, as noted above, in the presence of the appropriate metal 

ions it would be readily converted to hydroxyl radicals via Fenton chemistry. The 

hydroxyl radical is a strong oxidant that can attract hydrogen atoms from organic 

molecules with a rate constant close to the diffusion controlled limit.148  Because of its 

high reactivity the hydroxyl radical is very unselective and removes hydrogen atoms from 

primary, secondary and tertiary carbon atoms with almost equal facility. It also adds to 

C=C double bonds with a rate close to the diffusion controlled limit. Consequently, 

immediate oxidative damage would occur to any organic molecule in vicinity of the site 

of hydroxyl radical.  

 Bush and co-workers110, 139 have reported results showing the production of H2O2 

in systems involving Aβ 1-40, Aβ 1-42 and low concentrations of Fe3+ and Cu2+ in PBS. 

Quantitative measurement of the H2O2 levels was carried out using the standard 
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thiobarbituric acid reactive species (TBARS) assay and not spin-trapping. Their results 

are reasonably convincing, however, not in agreement with other studies where H2O2 

levels appear to be lower than those reported by Bush, as double integration of DMPO 

hydroxyl radical adduct signals against calibration standards indicates the concentration 

of adducts is not higher than about 0.5 mM from 100 mM CuAβ 1-40.   

A significant number of the aggregating polypeptides that have been implicated in 

neurodegenerative disease have been shown to bind to transition metal ions such as iron, 

zinc, copper or manganese. Another common emerging theme is that some of these 

polypeptides seem to function normally as antioxidants through structural or activity 

similarities to the active site of superoxide dismutase. This seems to apply to prion 

protein (PrP)149 and the Aβ peptide.150 When these proteins are in an altered pathological 

configuration, they could actually become pro-oxidants.  If we take the example of Aβ, 

there is strong evidence supporting that binding of Cu2+, Zn2+, and possibly Fe3+ to the 

peptide involves coordination with the three histidine residues at positions 6, 13 and 14, 

along with the tyrosine residue at position 10.150 In the general case of biologically 

relevant redox-active transition metal ions, binding to peptide molecules would still leave 

available coordination sites, allowing oxygen to bind, possibly in the form of a peroxo 

bridge. Such bridges are common in a variety of metal complexes,5,6,10,11,16 but in this 

case there is a further issue that should be considered. As the peptide molecules change 

conformation and begin to aggregate this could have the effect of twisting the bridging 

oxygens, resulting in a straining of the complex. However, in the dimeric and small 

polymeric forms of the soluble peptide the possibility of the formation of strong 
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electrophiles such as the Type-3 copper models (discussed below) cannot be discounted.  

The conversion of superoxide to H2O2 is a well established reaction. It is possible that the 

superoxide, and subsequently hydrogen peroxide, is formed as a byproduct of the 

aggregation and fibril assembly process. In other words, the amyloid-induced toxicity 

could actually be associated with the generation of ROS during the process of fibril 

extension and growth. In this case, a search for one or more types of special toxic 

aggregate may yield several variants of toxic intermediates.  

It is assumed that Fenton chemistry can occur if peroxide is present in close 

proximity to Fe3+ resulting in the formation of hydroxyl radicals which will react with 

organic molecules in situ, including peptides.  In this case a peptidyl radical may be 

detectable.  Yanker and coworkers151 investigated the neurotoxicity of a range of peptides 

spanning the entire Aβ 1-40 sequence and concluded that 25-35 was the toxic domain. 

This report was supported by Pike et al109 who observed the formation of stable 

aggregates and neurotoxicity in synthetic peptides containing residues 29-35. These 

results focused attention on the possibility that a particular amino acid residue within this 

sequence might play a key role. In particular the methionine 35 residue has attracted 

attention.145 Substitution of this methionine by aspartate, serine and cysteine all resulted 

in peptides which were neither aggregated nor neurotoxic.152  Conversely, substitution by 

leucine, norleucine, lysine and tyrosine residues resulted in peptides which neither 

aggregated nor were neurotoxic. Significantly, substitution of the methionine residue by 

serine or cysteine led to peptides which were at least as neurotoxic as Aβ 25-35 itself 

suggesting that methionine is not unique in promoting these properties.152  
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VI. TYPE-3 COPPER OXIDASE MODELS AND METALLO-ROS 

 

Because the generation of activated forms of O2 through metal-centered reactions 

has been implicated in the etiology of neurodegenerative disorders, it warrants the 

question:  Is the ROS generated and then diffused or does it remain metal bound?  Thus, 

even if the fields of Type-3 copper oxidase biomimetics and neurodegeneration by ROS 

seem unrelated, at least in terms of goals, they are certainly connected at the chemical 

level by the drive to understand copper-O2 interactions.  

The oxidation of organic substrates with molecular oxygen under mild conditions 

is of great interest for industrial and synthetic processes from an economical and 

environmental point of view.153 Although the reaction of organic substances with 

dioxygen is thermodynamically favorable, it is kinetically unfavorable due to the triplet 

ground state of O2. In biological systems this problem is overcome by the use of copper- 

or iron-containing metalloproteins which serve as highly efficient oxidation  

catalysts.154-157 Some examples of Cu-oxidases/oxygenases are shown in Figure 1. 

The catechol oxidases are Type-3 copper enzymes containing a binuclear copper 

center.158,159 Well-known representatives of these Type-3 copper proteins are 

hemocyanin,160-162 the O2 carrier for arthropods and mollusks, and tyrosinase.163 Catechol 

oxidase belongs, like tyrosinase, to the polyphenol oxidases which catalyze the oxidation 

of phenolic compounds to quinone in the presence of O2.  Tyrosinase catalyzes the 

hydroxylation of tyrosine to DOPA and the oxidation of DOPA to dopaquinone with  
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Figure 1.2. Types of enzymes involved in O2 metabolism.16 
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electron transfer to O2, while catechol oxidase only catalyzes the oxidation of catechols to 

quinones.164 This reaction is of significance in medicine and biology since catecholamine  

neurotransmitters like epinephrine, norepinephrine, and DOPA are part of the tyrosine 

metabolic pathway.165 Secondary reactions like melanin formation are downstream after  

oxidation of the catechol moiety of catecholamine substrates in the presence of 

polyphenol oxidases, which are also responsible for the brown color of injured plants.166 

 The copper in isolated catechol oxidases was determined to be EPR-silent due to 

an antiferromagnetically coupled Cu2+–Cu2+ pair.167 The electronic absorption spectrum 

of oxy-catechol oxidase from Ipomoea batatas exhibits an intense absorption band at 343 

nm and a weaker band at 580 nm, later found to be due to the peroxo complexes of 

hemocyanin and tyrosinase. These intense electronic transitions were assigned to a 

peroxo to Cu2+ charge transfer transitions168,169 with an O–O stretch vibrational band at 

749 cm–1 indicating a possible µ-η2:η2 bridging mode of the peroxo group. X-ray 

abosorption spectroscopy (XAS) investigations on the native met forms of catechol 

oxidases from Lycopus europaeus and Ipomoeas batatas have revealed that the active site 

consists of a dicopper(II) center, in which the metal atoms are coordinated by four N:O 

donor ligands. Multiple scattering extended x-ray absorption fine structure (EXAFS) 

calculations have shown high significance for one or two coordinating histidine 

residues.170 The short metal–metal distance of 2.9 Å and the results of EPR investigations 

indicate that a µ-OH bridged dicopper(II) center resides in the active site in the met forms 

of the proteins.171  Model studies of synthetic analogues have furthered the understanding 

of the structural and chemical properties of these proteins.11,16 Current interest is focused 
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on the elucidation of the mechanism of copper complexes that show catecholase and 

phenolase activities with different structural and electronic features around the copper 

ions. In these studies, mono- or multinuclear complexes have been synthesized and the 

properties of the chelating ligands have been varied with respect to geometry, number, 

and nature of the donor atoms. There are several structural constraints for proper Type-3 

oxidase activity, such as square-planar mononuclear Cu2+ complexes exhibit only little 

catalytic activity while non-planar mononuclear Cu2+ complexes show a high 

activity.172,173 It was also found that binuclear complexes can also catalyze oxidation 

reactions if the Cu···Cu distance is less than 5 Å. A steric match between substrate and 

complex is believed to be one of the determinants for reactivity where two metal centers 

have to be located in close proximity to facilitate binding of the two hydroxyl oxygen 

atoms of catechol prior to the electron transfer.172 This conclusion was supported by the 

observation that binuclear copper complexes are generally more reactive towards the 

oxidation of catechols than are the corresponding mononuclear species.174 It has been 

particularly challenging to synthesize structures where a substrate bridged compound can 

be resolved. Thus far only one case is known in which the crystal structure of a 

catalytically active binuclear Cu2+ complex with a coordinated catecholato ligand has 

been solved.175 Two other examples of mononuclear square-planar copper complexes176 

were also effective catalysts, demonstrating that geometrical effects are only one aspect 

of the complex activity. In mechanistic studies, the same authors pointed out that a 

narrow range of redox potentials for effective catalysis exists between ease of reduction 

by the substrate and subsequent reoxidation by O2.177 Although some general structure-
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reactivity patterns have been found, the oxidation chemistry of structurally well-

characterized copper complexes is still not fully understood, especially regarding the 

parameters affecting the catecholase activity.  For example, there appears to be no direct 

correlations between the rates of reaction and the redox potentials of these complexes.    

Exploration of the oxidation chemistry of well-characterized copper complexes together 

with a detailed understanding of the function of O2 activating copper enzymes is expected 

to provide the basis for new catalytic oxidation systems for synthetic and industrial 

processes.  

Current understanding of the types of copper–dioxygen species or intermediates 

relevant to O2-binding to or activation by copper proteins comes from the combination of 

biochemical/biophysical studies and coordination chemistry efforts, with the latter having 

played a significant role. Figure 2 on the next page provides a summary of structural 

types of nearly all now well established reactive intermediates of Cu-O2 species. These 

are the starting point for describing the possible conformation of reactive intermediates 

based on copper chemistry. As seen by the large number of examples (Figure 2), many 

structural types exist which are perhaps far more than are known for heme or nonheme 

iron enzymes or complexes.   

Synthetic bioinorganic copper(I)–O2 chemistry has flourished in the last 25 

years.11,16,178-181 These efforts to elucidate fundamental chemical aspects of Type-3 

oxidases have been inspired by understanding of the diverse nature of the active-site 

chemistry of copper-protein O2-carriers, monooxygenases, and oxidases.182-185 Enzymes 

with active sites having one, two, three, or four copper ions are known (Figure 1), and the  
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Figure 1.3. Structure of CuO2 intermediates identified in biomimetic complexes.16 



www.manaraa.com

 36

variations in ligand environment and reactivity patterns are vast. The prototype for 

dioxygen binding to copper, and subsequent the primary model for ligand design has  

been the structure and reversible O2-binding of arthropodal and molluscan blood oxygen 

transporting protein, hemocyanin.185 The dicopper motif, also found in tyrosinase182and 

catechol oxidase,186 is of considerable interest with respect to the relationship of 

dioxygen binding and activation. Formation of the copper-dioxygen adducts leads to 

copper-mediated reduction of O2 to superoxo (O2
–), peroxo (O2

2–), or O–O cleaved 

products (copper-oxo, O2–), which constitute the active species responsible for substrate 

oxidation.  While there is ample literature for oxidative reactions by copper 

complexes11,178,179,181,187,188 it is only within the past few years and recent advances in low 

temperature spectroscopy and reactivity that we have been able to assign a given organic 

reaction to specific copper-O2 derived species. In fact, a number of the CuO2 species can 

be placed into groups of reactivity types, for example as nucleophilic or electrophilic 

reactive intermediates. Following is a brief summary of the known reactivity of 

biomimetic complexes of Type-3 copper oxidases which is the basis for categorizations 

of different CuO2 intermediates responsible for reactivity. 

The µ-η2:η2 peroxo-dicopper(II) (Figure 1.2 SP) complex was first elucidated with 

x-ray crystallography in a synthetic system by K. Fujisawa and the late N. Kitajima,189,190 

and subsequently confirmed for oxy-hemocyanin.191 This moiety was also detected in 

tyrosinase182and catechol oxidase186 with spectroscopic methods.  It is likely, and now 

generally accepted, that the µ-η2:η2 peroxo-dicopper(II) core is closely involved in 

aromatic hydroxylations, both in enzymes like tyrosinase and chemical systems. Notably, 
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through the research efforts of W.B. Tolman and co-workers there is an established high-

valent bis-µ-oxo-dicopper(III) species,16, 188 (Figure 1.2 O) that is thus far not found in 

biochemistry but only exists as an interesting example of how chemists can elucidate 

useful new chemical possibilities. A moiety such as this, or even containing more than 

two copper ions in a different overall redox state, is suggested to be resposnsible for the 

hydroxylation of methane in particulate methane monooxygenase (p-MMO), a 

membrane-bound copper-dependent enzyme found in methanogenic bacteria.192  

Mono and binuclear copper-hydroperoxo reactive intermediates are also known. 

Cu2+-OOH and more recently Cu2+-superoxide species, were suggested to be present in 

the copper-containing enzymes dopamine β-monooxygenase (DβM) and peptidylglycine  

α-hydroxylating monooxygenase (PHM).183,193,194 While DβM and PHM have two active-

site copper ions, they are separated by a large distance (~11 Å) and the oxidative 

hydrogen-atom chemistry is thought to occur at the CuM site near the substrate binding 

pocket.  The second metal center, dubbed CuH, has been suggested to assist the reaction 

by serving the role of an electron-transfer center to deliver the proper number of electrons 

to reduce O2.  The chemistry of Cu-O2 species is being pursued more heavily as of late 

and interesting new results from Klinman and co-workers will offer a new insight into 

both ligand design and mechanistic approaches to studying Type-3 oxidase systems.195 

Binuclear peroxo-dicopper(II) complexes (Figure 1.2 TP and SP) were the first to be well 

characterized.16,190 In synthetic chemical systems, it is difficult to stabilize the principal 

reaction product of Cu+ and O2 (Cu-O2), from coupling with another ligand-copper(I) 

complex to form a Cu2+-(O2
2–)-Cu2+ product.180 These compounds were originally 
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stabilized at low temperature (–80 °C) in organic solvents.  Early examples are 

[Cu2
2+(XYLO–)(O2)]+ which contained an asymmetrical end-on peroxo moiety,196 a µ-

1,2-peroxo complex [{(TMPA)Cu2+}2(O2)]2+, (Figure 1.2 TP)197 and [Cu2
2+ (N4)(O2)]2+ 

Figure 1.3).198 Several analogues of [{(TMPA)Cu2+}2(O2)]2+ and [Cu2
2+ (N4)(O2)]2+ have 

been characterized, showing variable stability and reactivity.16,199,200  These complexes 

were used 201 to generate a reactivity profile based on the type of reactive intermediate. It 

was determined that [Cu2
+ (XYLO–)]+ reversibly binds O2 and that the resulting peroxo 

complex is basic.  This means that a catalyst that works through a nucleophilic 

substitution mechanism. It was also determined that the complex [Cu2
+ (XYLO–)O2]+ 

does not oxygenate triphenylphosphine nor CO, but it releases O2 and binds PPh3 and 

CO.  The peroxo complex however can be protonated to afford a µ-1,1-hydroperoxo 

complex, (Figure 1) or it can be acylated to form an analogous µ-1,1-acylperoxo 

complex. 202 Further, [Cu2
2+(XYLO–)(O2)]+ reacts as a nucleophile with CO2, with the 

formation of a percarbonato species that thermally decomposes to the carbonato complex  

[Cu2
2+(XYLO–)(CO3)]+. Phenols are not hydroxylated nor oxidatively coupled (forming a 

dimer product) by [Cu2
2+(XYLO–)(O2)]+, but it was the first example of a model system 

in the area of Type-3 oxidase biomimetics to show reactivity consistent with general 

acid-general base chemistry. The same nucleophilic chemistry is observed in reactions of 

[{(TMPA)Cu2+}2(O2)]2+.201,203  With these preliminary results it became evident that the 

nature of the intermediate would determine reactivity.   

By contrast, the µ-η2:η2 side-on peroxo complex [Cu2
2+ (N4)(O2)]2+ reacts 

differently with the same substrates tested for the end-on peroxo complexes201 yielding 



www.manaraa.com

 39

O=PPh3 in a reaction with PPh3. Perhaps one of the simplest and most elegant example of 

a model compound for Type-3 oxidases was synthesized by Stack and co-workers;204 

they showed that a side-on peroxo complex formed from a simple binucleating ligand, 

namely [{(L)Cu}2(O)2]2+ (L=N,N-di-tert-butyl-N,N’-dimethylethylenediamine Figure 1.4 

B),  also oxygenates PPh3. Further, [Cu2
2+(N4)(O2)]2+ does not protonate, acylate, nor 

react with CO2. The peroxo complex oxidizes phenols by H+ abstraction, leading to 

catalytic oxidative coupling chemistry under pre-equilibrium conditions (i.e. in the 

presence of excess phenol and dioxygen). Thus, a side-on peroxo complex is nonbasic or 

electrophilic in its reactivity toward these substrates. The electrophilic behavior of these 

model compounds has also been demonstrated in reactions of greater impact, as in 

hydroxylation of arenes (including phenols); this reactivity can have significant 

implications toward green chemistry, since phenols and chlorinated phenols are rather 

stable pollutants which can contaminate soil and water ways.  Activation of the peroxo 

complex [Cu2
2+(XYLO–)(O2)]+,201 was also determined to be electrophilic with H+ or 

CO2, affording [Cu2
2+(XYLO–)(O2H)]2+ 201 and the percarbonato species  

[Cu2
2+(XYLO–)(CO4)]+, respectively. These, in contrast to the original end-on peroxo 

complex [Cu2
2+(XYLO–)(O2)]+, readily convert PPh3 to O=PPh3. Thus, in biochemical 

systems, hydroperoxo-copper complexes are a possible reactive intermediate which may 

include percarbonato species, since CO2 as bicarbonate is certainly available in biological 

media.  While carried out for a specific set of peroxo-dicopper(II) compounds, the trends 

observed in these early reactivity studies of reactive intermediate types in copper-

dioxygen chemistry have generally been found to be consistent; however, there are some 
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exceptions.190,205,206 The end-on peroxo complexes with nucleophilic behavior have not 

yet shown oxidative chemistry comparable to the side-on complexes; however, Karlin 

and co-workers continue to pursue if ths alternative structure can perform useful 

chemistry, such as in the Baeyer-Villiger oxidation (oxidation of ketones to carboxylic 

acids in the presence of peracids). 

It is now known that binuclear copper enzymes such as tyrosinase and catechol 

oxidase adopt the side-on µ-η2:η2-peroxo structure, as do model compounds like the 

Kitajima/Fujisawa complex, the Karlin complex [Cu2
2+(N4)(O2)]2+ and several other 

analogues.16 The great number of investigations in copper(I)–dioxygen reactivity have 

also revealed a novel binding motif in which the peroxo O–O bond is fully cleaved, after 

receiving 2 electrons from di-Cu2+, resulting in a high-valent dicopper(III) bis-µ-oxo 

(Cu2
3+-O2) species (Figure 1.2 O), first characterized by Tolman’s group,207 using 

tridentate substituted triazacyclononane as ligands, and also by Stack and co-

workers,208,188 using ethylenediamine-based donors.16,188 The two isoelectronic species 

have dinstinct spectroscopic features and structural differences.   The main structural 

difference is the shortened Cu–Cu distance of ~2.8 Å for the bis-µ-oxo-dicopper(III) 

species when compared to the side-on peroxo-dicopper(II) Cu–Cu distance of ~3.5 Å. 

Theoretical calculations haved predicted that there is a small difference in the free 

energies of the side-on peroxo Cu2
2+-O2 and the Cu2

3+-O2 species and a low barrier for 

interconversion,209-211 meaning that under experimental conditions (ambient temperature) 

the two forms are under equilibrium.  This is experimentally observed in several systems  
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Figure 1.4. Early examples of Type-3 oxidase models by Karlin.196-

198 and Tolman.207 
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where the side-on peroxo-dicopper(II) and bis-µ-oxo-dicopper(III) species are found in a 

dynamic equilibrium, strongly influenced by the nature of the ligand such as denticity, N-  

alkyl vs. N-pyridyl donor, and steric effect, as well as reaction conditions, including 

concentration, counter ion effect, temperature, and solvent.16,188  These well-characterized  

 

Cu2O2-containing synthetic complexes are quite reactive, with oxidative 

capabilities ranging from alcohol/catechol oxidation, oxo transfer to phosphines and 

sulfides, to aromatic/aliphatic hydroxylations, and also oxidative N-dealkylations.11 The 

existence of two oxidative species coexisting in equilibrium complicates the 

determination of which form is the true reactive intermediate responsible for the 

reactivity. A brief summary and comparison of Karlin’s and Tolman’s effors is discussed 

below, highlighting preferential reactivity patterns of side-on peroxo-dicopper(II) and 

bis-µ-oxo-dicopper(III) species. 

 Karlin’s group212,213 elucidated several examples of copper-promoted dioxygen 

activation.  While stoichiometric in nature, this monooxygenase model system is a rare 

chemical system where an unactivated C–H bond substrate is rapidly hydroxylated under 

“very mild” conditions utilizing dioxygen (–80 °C and ≤1 atm O2).213,214 The dicopper(I) 

complex [Cu2
+(XYL-H)]2+ reacts with O2 to form [Cu2

2+(XYLO–)(OH)]2+ 

stoichiometrically.  Isotope labeling experiments (using 18O) demonstrate the product 

phenol O-atom is derived from dioxygen, and the observed O2-consumption 

stoichiometry (Cu:O2 = 2:1) is consistent with monooxygenases. Detailed low 

temperature stopped-flow kinetic studies180,215 revealed the intermediate  
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[Cu2
2+(XYL-H)(O2)]2+. Its peroxo structure was confirmed by utilizing the electron 

withdrawing R=NO2 derivative, which results in a decreased kon but even more 

diminished first order rate constant for the hydroxylation step, thus allowing for 

spectroscopic investigation.179,215 In resonance Raman studies, characteristics of  

[Cu2
2+ (NO2-XYL-H)(O2)]2+ are conistent with a µ-η2:η2-peroxo moiety, with  the  

O–O vibrational stretch at 747 cm–1.216 Analysis of spectroscopic and kinetic studies 

indicates that the side-on peroxo moiety is the reactive species responsible for 

oxygentation, supported by the observation that the O–O stretching disappears at the 

same rate as the phenolic C–O bond stretch at 1320 cm–1 in  

[Cu2
2+(NO2-XYLO–)(OH)]2+.216  A number of results support the m-xylyl hydroxylation 

reaction where [Cu2
2+(R-XYL-H)(O2)]2+ acts as an electrophile,  attacking the π-system 

of the arene substrate. Side-on peroxo complexes [Cu2
2+(R-XYL-H)(O2)]2+ are very 

similar to [Cu2
2+(N4)(O2)]2+, shown to be electrophilic. Stopped-flow kinetic studies 

showed that rate constant for hydroxylation increases as the R substituent becomes more 

electron donating (Hammett plot ρ = –2.1),179 with deuterium substitution into the 2-H 

position of the substrate not affecting the first order rate constant for hydroxylation.  The 

lack of a deuterium kinetic isotope effect is consistent with an electrophilic attack on the 

arene substrate π-system, precluding C–H bond cleavage in the rate-determining step.179 

Methyl substitution into the xylyl 2-position where hydroxylation occurs for the parent 

compound [Cu2
+(XYL-CH3)]2+ in a reaction with O2, results in aromatic hydroxylation 

followed by a 1,2-migration of the methyl group. The process is similar to the ‘‘NIH 

shift’’, observed previously in iron hydroxylases via isotope labeling, where a carbonium 
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ion intermediate is obtained as a result of an electrophilic iron-oxo reactive intermediate, 

resulting in R migration.217 Computational studies indicate that the side-on peroxo moiety 

is indeed electrophilic; the xylyl hydroxylation reaction can be seen as derived from 

interactions of the empty π*/σ* orbitals of peroxo O–O with the filled pπ orbitals in the 

arene substrate.216,218 The favorable proximity of the side-on peroxo moiety to the m-

xylyl substrate, due to the ligand design and resulting intramolecular O2 reaction with two 

copper(I) centers, is certainly important in promoting the aromatic hydroxylation 

reaction. In this sense, the system resembles reactions at enzyme active sites, where pre-

organization of the substrate and reactive species occur.  

Since the discovery and characterization of the model monooxygenase system 

[Cu2
+(XYL-H)]2++O2 → [Cu2

2+(XYLO–)(OH)]2+, a good number of analogous systems 

have been described.11,179  Tolman and co-workers,206 however, have shown that a bis-µ-

oxo-dicopper(III) complex is also capable of aromatic hydroxylation. This observation is 

opposite in trend to the general reactivity patterns establishedthus far, serving to 

demonstrate the general points that placing a reactive intermediate species in close 

proximity to a substrate by ligand design greatly enhances the probability of turnover, 

and that different types of intermedieates will promote certain placements thus promoting 

different reactivities.  Itoh and co-workers219 have demonstrated the importance of the 

side-on peroxo-dicopper(II) species as relevant to phenol o-hydroxylation both in 

synthetic systems and in the enzyme tyrosinase.220 Cresolase activity (o-hydroxylation of 

phenols, i.e cresol) was successfully mimicked with a Cu+ complex possessing a 

tridentate ligand N,N-bis[2-(2-pyridyl)- 
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ethyl]-R,R-dideuteriobenzylamine (LPy2Bz, Figure 1.4 A) that binds Cu+ and  reacts with 

O2 to generate a low-temperature stable side-on peroxo-dicopper(II) species.219,220 

Addition of lithium salts of p-substituted phenols gives the corresponding o-hydroxylated 

catechols in high yields. Neither oxidation to the o-quinone nor C–C/C–O coupled 

dimerization was observed. With the use of 18O isotope labeling experiments, it was 

confirmed that the incorporated catechol oxygen atom is derived from O2.220 Mechanistic 

studies revealed substrate saturation kinetics, consisent of formation of a phenolate/Cu2-

O2 complex prior to the rate-determining oxygenation step. An observed increase in 

reaction rate with increasing electron donating ability of the X substituent (p-XC6H4O-Li) 

coupled with the lack of a deuterium kinetic isotope effect, suggests the side-on peroxo 

species reacts via an electrophilic aromatic substitution mechanism,219 similar to that 

described for the Karlin system,179 the dicopper-mediated m-xylyl aromatic 

hydroxylation.  To compare and contrast, Itoh and co-workers220 studied the analogous 

chemistry on tyrosinase. As it was also seen in the model reaction, oxygenation rates 

increased with increasing p-substituted phenol electron donating properties, clearly 

demonstrating that the enzyme acts as an electrophilic reactive intermediate. Hammett 

plots of the enzymatic reaction give a ρ value of –2.4, similar to the model reaction (ρ = –

1.8) and Karlin’s XYL hydroxylation (ρ = –2.1),179 supporting the hypothesis that the 

phenolase activity of tyrosinase occurs by an electrophilic attack by a µ-η2:η2-peroxo-

dicopper(II) species.   

Casella and co-workers221,222 and Sayre and coworkers223,224 have also contributed 

in the area of o-phenol hydroxylation chemistry and their papers should be noted. 
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Consistent with the conclusions described above, Casella’s group has also concluded that 

the side-on µ-η2:η2-peroxo species is critical in this chemistry.221 Stack and co-workers205 

showed that a side-on peroxo-dicopper(II) complex with a secondary amine ligand, N,N-

di-tert-butylethylenediamine (Figure 1.4 B), also exhibits some phenolase and 

catecholase activity, producing mixtures of catechol and o-benzoquinone from 2,4-di-

tert-butylphenolate as substrate.  With addition of the neutral phenol, no oxidatively 

coupled dimer is produced, contrary to Karlin’s complex, [Cu2
2+(N4)(O2)]2+. Stack’s 

side-on peroxo complex is also able to perform other electrophilic types of reactions, 

converting PPh3 to O=PPh3, catechols to quinones, and benzyl alcohol and benzylamine 

to benzaldehyde and benzonitrile, respectively.205   

Bis-µ-oxo-dicopper(III) species have been implicated in a number of different 

reactivities, including alcohol oxidation, phenol coupling, oxidative N-dealkylation, 

aliphatic hydroxylation, and oxygenation of phosphines or sulfides.188 Detailed 

mechanistic studies and theoretical calculations suggested that the bis-µ-oxo core 

facilitates hydrogen-atom abstraction reactions.11,210,211,225  Tolman and co-workers11,226 

studied intramolecular N-dealkylation reactions by bis-µ-oxo-dicopper(III) complexes. 

The electrophilic nature of the bis-µ-oxo core was elucidated by its lack of reactivity 

towards acids, while it can only act as an outer-sphere reactive intermediate in the 

presence of acid. The bis-µ-oxo complex decomposes by oxidative N-deakylation, with 

one of the arms of the tri-substituted triazacyclononane ligand being cleaved, resulting in 

production of the primary amine and the aldehyde/ketone. Double crossover experiments 

using labeled 18O2 confirm the carbonyl oxygen derives from the high-valent Cu2
3+-O2  
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core and that the reaction is intramolecular. Primary kinetic isotope effects and Eyring 

activation parameters revealed that C–H bond cleavage is the rate-determining step. A  

Hammett study with derivatives of tribenzyl-substituted triazacyclononane ligands 

demonstrates that reaction rates increase with electron-donating substituents. A small 

observed negative ρ value of –0.4 suggests the Cu2
3+-O2 core behaves as an electrophilic 

radical;11 similar ρ values were reported for benzylic hydrogen-atom abstraction reactions 

using free radical reactive intermediates, as well as cytochrome P450 and porphyrin-

derived high-valent metal-oxo species.  Bis-µ-oxo-dicopper(III) complexes with 

pyridylalkylamine ligands have been used by Itoh et al.227 to model benzylic 

hydroxylation chemistry similar to dopamine-β-monooxygenase (DβM) activity. Their 

experiments using 18O2 confirmed oxygen atom incorporation into the oxygenated 

alcohol, which in the experiment is trapped by coordinating to copper(II). Deuteration at 

benzylic positions revealed a large kinetic isotope effect of 35.4 at –80 °C. The activation 

parameters are consistent with intramolecular rate-determining hydrogen atom 

abstraction followed by rebound of a copper-bound OH group, analogous to cytochrome 

P450 monooxygenase chemistry.  A Hammett plot based on experiments with varying 

substituents at the para position gives ρ = –1.48, consistent with benzylic hydrogen atom 

abstraction reactions.  With the tridentate ligand LPy2Bz, benzylic hydroxylation was also 

observed, but spectroscopic evidence, reveals the low-temperature dioxygen adduct 

formed is a side-on µ-η2:η2-peroxo-dicopper(II) species. For this system, the deuterium 

kinetic isotope effects are much smaller than expected for a rate-determining hydrogen 

atom abstraction step, and the rate of hydroxylation is not affected by the p-substituent of 
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the ligand. Instead, the rate of reaction was found to be solvent dependent. From the 

combined observations, it was proposed that cleavage of the O–O bond to form the high-

valent copper(III) bis-µ-oxo core was rate-limiting, which is then responsible for the 

hydrogen atom abstraction.228  Karlin and co-workers229,230 showed that copper(I)/O2 

reactivity with tridentate ligands give rise to mixtures of side-on peroxo-dicopper(II) and 

bis-µ-oxo-dicopper(III) complexes, in rapid equilibrium at –80 °C. These showed 

oxidative chemistry towards different substrates. With respect to dimethylaniline 

oxidative N-dealkylation, mechanistic studies using p-substituted and deuterated 

dimethylanilines suggest the reactive intermediate can operate via either a rate-limiting 

hydrogen-atom abstraction or electron-transfer pathway, depending on the R group in the 

complex [{Cu(R-Me-PY2)}2(O2)]2+ and the ease of the substrate oxidation.231 

Itoh and co-workers232 have been successful in distinguishing the active 

intermediate for the radical coupling of neutral phenols. According to their spectroscopic 

features, the Cu2O2 adducts are the bis-µ-oxodicopper(III) and the side-on peroxo-

dicopper(II) species (Figure 1.2), respectively. Both isomeric species react with neutral 

phenols to produce solely the C–C coupled dimers. Both Cu2
3+-(O)2 and Cu2

2+-(O2) 

species exhibit this same behavior. However, the rate constant for the reaction of the bis-

µ-oxo species was two orders of magnitude greater than that for the peroxo complex. 

This could be due to two reasons: either the bis-µ-oxo is intrinsically a better reactive 

intermediate than the side-on peroxo because of a difference in redox potentials, or the 

(LPY1)2Cu2
3+-(O)2 bis-µ-oxo complex is the true reactive intermediate, which would be 

in much higher concentration than a small amount of bis-µ-oxo isomer present in 
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equilibrium with the side-on complex (LPy2Bz)2Cu2
2+-(O2).  The hypothesis that the bis-µ-

oxo is the true reactive species is favored because if the side-on peroxo complex was able 

to couple phenols via the proton-coupled electron transfer mechanism, then the reaction 

with phenolates should also occur through an outer-sphere electron transfer mechanism to 

give the coupled phenol.  However, this contradicts previous observations that the µ-

η2:η2-peroxo-dicopper(II) complex reacts with phenolates to yield solely o-catechol 

products. 

 In the chemistry described for hydroperoxodicopper(II) (Figure 1.2 µ-1,1 

hydroperoxo), enhanced electrophilic reactivity occurs due to protonation of less reactive 

and nucleophilic peroxo-dicopper(II) complex, at least with respect to triphenylphosphine 

oxygenation. While the latter reaction is not of great importance due to the ease of PPh3 

oxygenation, protonation of peroxo-copper or other O2-derived species may be important 

as a means of peroxo-copper activation.233-235 In heme enzymes such as cytochrome P450 

monooxygenase, protonation of a heme-peroxo leads to O–O heterolytic cleavage and 

generation of the high-valent ferryl species responsible for electrophilic oxidation 

reactions like C–H hydroxylation or epoxidation.236 Activation to an alternate reactive 

intermediate appears to be present in heme oxygenase, where an O2-derived heme-

hydroperoxo species attacks the porphyrin meso-carbon substrate.237,238 More unique 

examples of reactivity for binuclear hydroperoxo complexes which do not have the ArO– 

bridging ligands have been reported.239 Although structural descriptions are not as readily 

available, kinetic and/or spectroscopic probing shows such Cu2+-(–O2H)-Cu2+ 

intermediates are capable of arene hydroxylation. Thus, Karlin, Zuberbühler, and co-
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workers239 report that reaction of a dicopper(II) complex with ligand XYL-H and 

hydrogen peroxide also leads to efficient arene hydroxylation. It is likely, according to 

reactivity, that a µ-η1:η1-OOH hydroperoxo-dicopper(II) species facilitates arene 

hydroxylation. Casella and co-workers240 reported a compound capable of performing 

double arene hydroxylation, again in a dicopper(II) plus hydrogen peroxide reaction; not 

only were kinetic parameters determined for the kinetics of substrate attack by an η1:η1-

hydroperoxo-dicopper(II) intermediate, but the latter was also characterized by UV-Vis 

and EPR spectroscopies. Thus, dicopper(II)-hydroperoxo species, with or without an 

additional phenoxo bridging ligand, which could, be replaced by a water or hydroxo 

ligand in solution,240 can effect oxidation reactions, and further exploration of their 

chemistry should be considered.   

 The work involved in ligand design and low-temperature techniques leads to 

stable enough species to be characterized spectroscopically, but may prevent efficient 

reactivity, especially for hydrocarbon-based substrates. Thus, there is a general caveat in 

concluding that an observed organic substrate oxidative reaction actually occurs from a 

well-defined and fairly stable Cun-O2(H) complex. The true reactive intermediate may be 

something other than what can be observed spectroscopically. It is possible that a 

transient mononuclear Cu3+-oxide↔Cu2+-O•– species is the most likely candidate for the 

reaction of Type-3 oxidases both in the native proteins and their biomimetic models.188  
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VII. CONCLUDING REMARKS 

 

 Considerable effort in trying to elucidate the nature of the cause of 

neurodegeneration in AD and the catalytic mechanism through which Type-3 copper 

oxidases catalyze their chemical transformations has yielded some common threads.  

First, it is known that oxygen radicals and reduced forms of oxygen collectively termed 

ROS are generated during normal metabolism.  It is also know that the amyloid-β fibrils 

and plaques can generate those same ROS via a metal-centered mechanism.  These 

activated forms of O2 are no different than the metal-bound forms associated with Type-3 

copper oxidases.  It is expected that further analysis of metal complexes of amyloid-β can 

show that the chemistry proposed as the culprit in the etiology of AD is very much 

consistent with the reactivity of Type-3 copper oxidases and their biomimetic systems. 
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CHAPTER II.  Cu2+-AMYLOID-β COMPLEXES AS A REDOX-ACTIVE 

CATALYST TOWARD THE OXIDATION OF 1,2,3-TRIHYDROXY BENZENE‡ 

 

 

I. INTRODUCTION 

 

Abnormal metal-ion homeostasis has been closely associated with several 

neurodegenerative diseases, including Parkinson’s, amyotrophic lateral sclerosis, 

Creutzfeldt-Jakob disease (i.e. mad cow disease), and Alzheimer’s disease (AD).1–3 

Because high cytoplasmic concentrations of free metal ions are toxic and potentially 

lethal, intricate physiological pathways have evolved to transport and distribute metal 

ions to their targets which include enzymes and proteins.4  With aging, physiological 

processes responsible for accurate delivery of metal ions break down and “leakage” of 

free metal ions can cause toxic effects to cells.5,6 Divalent ions of redox-active transition 

metals have often been associated with oxidative stress and closely involved in the 
                                                 
This work has been published: ‡ G.F.Z. da Silva, W.M. Tay, L.-J. Ming, Catechol Oxidase-like Oxidation 
Chemistry of the 1–20 and 1–16 Fragments of Alzheimer's Disease-related β-Amyloid Peptide: THEIR 
STRUCTURE-ACTIVITY CORRELATION AND THE FATE OF HYDROGEN PEROXIDE, J. Biol. 
Chem.  (2005), 280, 16601-16609. 
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chemistry of reactive oxygen species (ROS), including hydrogen peroxide and 

superoxide and hydroxyl radicals.7  Because increases in intracellular concentrations of 

metal ions is closely related to the effects of aging, oxidative stress, and AD, there is 

considerable interest in investigating the connection between malfunction of regulatory 

processes such as metal transport and the presence of ROS with the pathology of AD.  

The chemistry of redox-active metal complexes of β-amyloid peptide (Aβ) has been 

an area of intense focus in the study of AD.  The aggregation of Aβ within the neocortex 

is closely related to the pathology of AD and has been shown to be induced by metal 

binding.8,9  The Aβ peptides are generated by the cleavage of the ubiquitous amyloid 

precursor protein (APP) by α, β, and γ secretases.10  Aβ in the form of insoluble plaques 

contains up to mM amounts of Zn2+, Cu2+, and Fe3+ in the neocortical region of the 

brain;7 however, the cause/effect connection of the metallo-Aβ plaques with AD is still 

under debate.11  The metal coordination environment of the 1–40 and 1–42 peptides has 

been previously studied and their pH dependent aggregation reported.9,12  The results 

showed the metal binding seemed to be non-stoichiometric with approximately 3.5 metal 

ions per pair of aggregated peptides and a cooperative binding pattern as the amount of 

aggregates increases.7  Since Aβ1-42 and Aβ1-40 have been shown to bind Zn2+ and Fe3+ 

with nM and Cu2+ with aM apparent dissociation constants by means of quantitative 

determination of the metal-complex precipitates,7 understanding of the metal-binding 

domain and its structure may shed light on the chemistry related to the neuropathology of 

AD.   
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Though the coagulation of the peptide plaques leaves little doubt that interaction with 

cytoplasmic molecules is unlikely, smaller fragments of the amyloid peptide are soluble 

and Aβ fibrils extend across membranes, exposing them to the cytoplasm.  Recently, 

insulin degrading enzyme (IDE) has been shown to digest the longer Aβ peptides (40–42 

amino acids) into smaller soluble fragments.13  Moreover, the cleavage of APP by α and 

β- secretases produces the Aβ1-16 fragment of APP.14  These soluble fragments and intra-

membrane spanning fibrils still possess possible metal binding sites such as histidines, 

glutamate, aspartate, and tyrosine within the 1-20 fragment of Aβ in the sequence 

DAEFR5
 HDSGY10

 EVHHN15
 KLVFF20.  Redox chemistry of Aβ has been previously 

reported, wherein Met35 was suggested as a “built-in” reducing agent required for the 

redox cycling hypothesis.15  The lack of sufficient data on the redox chemistry of and the 

oxidative stress caused by metallo-Aβ and the discrepancies in previous studies such as 

the presence or absence of free-radicals and the nature of the metal-Aβ interaction seem 

often to be the shortcoming in Aβ research.  Understanding of the chemical processes 

associated with metallo-Aβ may provide insight into the upstream and/or downstream 

regulatory processes that lead to AD. Herein, we describe the oxidation chemistry of 

CuAβ in the presence and absence of H2O2, showing conclusive metal-centered pre-

equilibrium kinetics toward the oxidation of a simple substrate and the oxidative cleavage 

of double-stranded plasmid DNA.  
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II. EXPERIMENTAL 

 
The 1-20 and 1-16 fragments of Aβ were purchased from Aldrich (St. Louis, MO) or 

synthesized at the Peptide Center of the University of South Florida.  The identities of the 

peptides have been confirmed with a Bruker MALDI-TOF mass spectrometer.  The 

substrate 1,2,3-trihydroxylbenzene (THB) was obtained from Sigma -ldrich, 3-methyl-2-

benzothiazolinone hydrazone hydrochloride monohydrate from Acros (Fairlawn, NJ), the 

plasmid pQE30Xa from Quiagen (Valencia, CA), EDTA, DMSO, mannitol, H2O2, 

Cu(NO3)2, ZnCl2, and Ni(SO4) from Fisher (Swanee, GA), and CoCl2 from Mallickrodt 

(Paris, KY).  All plastic ware was demetallized with EDTA and extensively rinsed with 

18.0-MΩ water to remove the chelator.  The water used for the studies of DNA cleavage 

was autoclaved to remove ubiquitous nucleases. 

DNA cleavage assay: The metal derivatives of Aβ were prepared by dissolving the 

peptide in 18.0-MΩ water and separated into aliquots followed by addition of 

corresponding metal ions at 1:1 stoichiometric ratio, which was further diluted into 

aliquots of working concentrations. The metal-complexes were freshly prepared in all 

experiments.  A typical reaction toward DNA cleavage contained 150 ng of plasmid 

DNA, 4.0%, 2.0%, or 0.2% H2O2, and 5.0 µM of metallo-Aβ derivatives in 100 mM 

HEPES at pH 7.00 in a volume of 15.0 µL.  A time-course experiment was performed 

and analyzed in a 1.0 % agarose gel stained with ethydium bromide, and then 

photographed on a transilluminator.   

THB oxidation assay: Several concentrations of THB ranging from 0.10 to 5.0 mM 

were incubated with 7.5 µM of CuAβ and 1.60, 3.20, 16.20, 32.3 or 70.0 mM H2O2 and 
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buffered with 100 mM HEPES at pH 7.00 in a final volume of 1.0 ml.  The formation of 

product was monitored at 420 nm (ε = 4,583 M–1 cm–1) on a Varian CARY50 Bio-UV-

Vis spectrophotometer for 5 minutes, and the rates determined by the change in 

absorbance over time.  The background oxidation of THB was conducted in the same 

manner without CuAβ in the assay solution.  Rates were fitted to appropriate rate laws 

and rate constants determined by the use of SigmaPlot 8.0.   

The dependence of H2O2 on THB oxidation by CuAβ was determined by measuring 

the oxidation rate at several different concentrations of hydrogen peroxide with saturating 

concentration of THB (6.0 mM).  The initial rates were determined and then fitted as a 

function of [H2O2] to an appropriate rate law to reveal the rate constant.   

Alternatively, the catechol oxidase assay was performed as previously reported with 

minor changes to fit current studies.16  Same molar concentrations of THB and 3-methyl-

2-benzothiazolinone hydrazone (which serves as an ortho-quinone indicator) were mixed 

in 100 mM HEPES at pH 7.00 in the presence of 3.5 µM CuAβ.  The red-adduct of the 

ortho-quinone product was monitored at 500 nm (ε = 32,500 M–1cm–1) and rates 

calculated.  Auto-oxidation of THB was determined under the same conditions without 

Cu-Aβ.  

Metal Titration: Apo-Aβ was dissolved in 100 mM HEPES at pH 7.00 to a final 

concentration of 1.0 mM.  Cu2+ binding was monitored by titrating the metal into the apo-

Aβ solution and the electronic spectra collected after each addition of the metal.  Cu2+ 

binding was also determined through the activity of CuAβ complex toward THB.  In this 

case, Cu2+ was titrated into a fixed amount of the peptide in 100 mM HEPES at pH 7.00 
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in the presence of 10.0 mM of THB and 70.0 mM H2O2.  The oxidation rates were 

determined as a function of [Cu2+], then fitted to a simple equilibrium of metal:peptide = 

1:1 or a cooperative binding pattern using the Hill equation. 

NMR Spectroscopy: All the NMR spectra were acquired on a Bruker DPX250 

spectrometer at 1H resonance of 250 MHz.  The metal-binding was monitored through the 

changes in the NMR spectra.  The peptides Aβ1-16 and Aβ1-20 and the paramagnetic shift 

reagent Co2+ were prepared in d6-DMSO.  The metal ion was gradually titrated into the 

peptide and the paramagnetically shifted 1H NMR signals detected.  A typical spectrum 

showing the paramagnetically shifted 1H NMR signals consists of ~80,000 transients 

from accumulation of several spectra of 10,000–20,000 transients with a recycle time of 

~50 ms and a spectral window of ~250 ppm.  Solvent exchangeable signals were 

determined by adding a drop of D2O into the sample which disappear after the addition. 

Molecular mechanics:  The primary sequence of Aβ1-16 peptide was entered into 

BioCAChe 6.0 (Fujitsu, Beaverton, Oregon) and the energy of its structure under 

solvation using a simulated water droplet was minimized with the MM3 molecular 

mechanics method.  Histidine side chains were considered the ligands in the calculations 

on the basis of the NMR data.  

 

III. RESULTS AND DISCUSSION 

 
Oxidative Double-Stranded DNA Cleavage: Though the bulk of the amyloid plaques 

in AD brain is membrane bound, proteolytic processing of amyloid has been shown to 

yield soluble fragments.12  It has also been demonstrated that the neuropathology of AD 
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may directly affect DNA, eventually leading to apoptosis.17  As metal ions are involved 

in the formation of amyloid plaques, the oxidative activity of metallo-Aβ complexes 

against plasmid DNA was probed in vitro with gel electrophoresis. The oxidative 

activities of the Zn2+, Ni2+, and Cu2+ complexes of Aβ1-20 (ZnAβ1-20, NiAβ1-20, and 

CuAβ1-20) toward the cleavage of plasmid DNA were determined by incubating several 

different concentrations of the complexes with plasmid DNA in the presence of 4.0 % 

H2O2 at room temperature for 30 minutes (Figure 2.1).  Here, ZnAβ1-20 serves as the 

control since Zn2+ is oxidative inactive.  The plasmid in the presence of metallo-Aβ1-20 at 

lower concentrations shows a middle band that is not present in the reference (Lane R, 

Figure 2.1).  Comparing the middle band with the DNA ladder gives an approximate size 

of 3.5 kbp, consistent with the size of linearized plasmid from the manufacturer.  The 

activities of the derivatives follow the trend CuAβ1-20 > NiAβ1-20 > ZnAβ1-20, 

demonstrating the involvement of metal in the oxidative cleavage of dsDNA.   

One interesting result is shown in the H2O2 + DNA and the H2O2 + DNA + Aβ1-20 

control experiments. The 4.0 % H2O2 shows a significant damage toward plasmid dsDNA 

(Lanes 1, Figure 2.1), whereas Aβ1-20 decreases the H2O2 damage of plasmid dsDNA and 

perhaps acts as a scavenger of ROS species (Lane 2, Figure 2.1).  The role of Aβ as an 

antioxidant has been previously reported,18 wherein the presence of Met35 was proposed 

to prevent lipid peroxidation while the M35L mutant showed reduced antioxidant 

activity.  In a similar study, Aβ1-40 was found to prevent the oxidation of the lipoproteins 

from cerebral spinal fluid and plasma.11  Moreover, Aβ1-42 was shown to exhibit an  
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Figure 2.1. Concentration and metal-dependent assay of dsDNA cleavage. R is the 

reference plasmid DNA which shows supercoiled band (bottom) and nicked circular 

band (top); lane 1, DNA + 4% H2O2; lane 2, DNA + apo-Aβ1-20 (200 µM) + 4%  H2O2; 

lanes 3–6, ZnAβ1-20 (40, 80, 100, and 200 µM, respectively) + 4% H2O2; lanes 7–13, 

NiAβ1-20 (5, 10, 20, 40, 80, 100, and 200 µM, respectively) + 4% H2O2; CuAβ1-20 (at 5, 

10, 20, 40, 80, 100, and 200 µM) + 4% H2O2 shows complete DNA cleavage (“blank” 

gel, not shown).  All assays were incubated for 30 minutes.  The middle band is the 

linearized plasmid detected at 3.5 kbp position, consistent with that obtained from the 

sequence of the plasmid pQE30Xa (Qiagen).  Lanes 1’–6’ show the plasmid cleavage 

by Cu2+ ions (5 µM) + 3.6% H2O2 at 10, 20, 40, 60, 90, 120 min. The standard DNA 

ladder starts with 1 kbp from the bottom with 1 kbp increment upward. 
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antioxidant activity more effective than ascorbate in cerebral spinal fluid.19  The 

antioxidant activity of Aβ was also demonstrated in the decrease of cytoplasmic amounts 

of 8-hydroxyguanosine, a major product of nucleic acid oxidation present in elevated 

amounts in the brains of AD patients.20 These observations implied that the production of 

Aβ could be related to prevention of oxidative stress.  We have demonstrated here that 

even shorter fragments of Aβ without a Met can serve as a protective agent against 

oxidative damage of DNA, corroborating with some previous reports11,19,20 and 

supporting the hypothesis that apo-Aβ might be an effect of the oxidative stress in AD 

brains and might serve a specific purpose to scavenge ROS. This antioxidant activity is 

also observed in all concentrations of ZnAβ1-20 (Lanes 3–6, Figure 2.1), consistent with 

the lack of redox chemistry of Zn2+ and a protection role against dsDNA cleavage as in 

the case of apo-Aβ1-20.   

Although Ni2+ is redox active and some of its complexes have been shown to exhibit 

oxidative damage toward DNA,21 NiAβ1-20 does not show such “chemical nuclease” 

activity, probably attributed to its low redox potential.  Conversely, like apo-Aβ and 

ZnAβ1-20 discussed above, NiAβ1-20 shows a concentration-dependent protection against 

oxidative damage of dsDNA by H2O2, with better protection at higher concentrations 

while no significant protection at [NiAβ1-20] < 80 µM (Lanes 7–12, Figure 2.1).  NiAβ 

has not been shown to be associated with AD pathology; however, it may serve as a 

structural and mechanistic probe in future studies of metallo-Aβ or similar systems. 

The activity of 5.0 µM CuAβ1-20 (Lane 14, Figure 2.1) is exceedingly higher than that 

of ZnAβ1-20 at all concentrations tested in the presence of 4.0% H2O2 (Lanes 3-6, Figure 
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2.1) which effectively oxidizes the entire dsDNA plasmid sample into fragments that are 

too small to be resolved with the agarose gel electrophoresis (empty lanes not shown).  

Cu2+ ion has been demonstrated in the literature to be active toward DNA cleavage in the 

presence of H2O2.22 The use of Cu2+ (5.0 µM) in the presence of 3.6% H2O2 as control  

shows a much slower cleavage rate as the plasmid is not completely digested after 2 

hours of incubation.  In order to monitor the catalytic activity of CuAβ1-20 toward plasmid 

dsDNA, the concentration of H2O2 was reduced to 2.0% and a time course experiment 

conducted (Figure 2.2).  CuAβ1-20 completely oxidizes plasmid DNA within 5.0 minutes 

in the presence of 2.0% H2O2, leaving only a faint streak in the gel (Lane 7, Figure 2.2). 

The ability of apo-Aβ1-20 to act as a protector against oxidation of dsDNA in the presence 

of H2O2 is once again demonstrated here.  Further reducing the concentration of H2O2 to 

0.2% allows a clearer monitoring of plasmid cleavage patterns (Figure 2.3).  Within 10 

minutes of incubation, 5.0 µM of CuAβ1-20 shows double-stranded DNA cleavage as 

evident in the appearance of a middle band approximately 3.5 kbp (Lane 6, Figure 2.3).  

Within 20-30 minutes, complete conversion of the supercoiled plasmid into linear and 

nick-circular conformations is observed, evident in the changes in the intensity of the 

different forms of the plasmid compared to the reference (Lanes 3 and 4, respectively, 

Figure 2.3).  After 30 minutes, plasmid is cleaved into small pieces leaving a streak of 

oligonucleotide products (Lanes 1, 2, and 3).  The different and quite opposite activities 

between apo-Aβ1-20 and CuAβ1-20 toward dsDNA damage may hint a physiological role 

of small fragments of apo-Aβ.   
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Figure 2.2. Time course reactivity assay of dsDNA cleavage.  R is the reference 

plasmid DNA; lanes 1–7, DNA + 5.0 µM CuAβ1-20 + 2% H2O2 (60, 50, 40, 30, 20, 

10, 5 min, respectively); lanes 8-11, DNA + Aβ1-20 (metal free) + 2% H2O2 (60, 40, 

20, 10 min, respectively); lanes 12–15, DNA + 2% H2O2 (60, 40, 20, 10 min, 

respectively); and lanes 16–18, DNA + Aβ1-20 (metal free, peroxide free). The 

standard DNA ladder starts with 1 kbp from the bottom with 1 kbp increment 

upward. 
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Figure 2.3. Time course reactivity assay toward the cleavage of 150 ng dsDNA. R is 

the reference DNA; lanes 1–6, DNA + 5.0 µM CuAβ1-20 + 0.2% H2O2 (60, 40, 30, 

20, 15, 10 min, respectively); lanes 7-10, DNA + 5.0 µM CuAβ1-20 (peroxide free 60, 

40, 20, 10 min, respectively); and lanes 11-15, DNA + 0.2% H2O2 (40, 30, 20, 15, 

10 min, respectively). The standard DNA ladder starts with 1 kbp from the bottom 

with 1 kbp increment upward.  The cleavage of plasmid by 5.0 µM Cu2+ ions and 

3.6% H2O2 is shown in Fig. 1, which exhibits a much lower activity.  
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To determine the role of the oxidizing agent in these reactions, the same 

concentration of CuAβ1-20 was incubated with the plasmid in the absence of H2O2 up to 

60 minutes, which shows negligible cleavage (Lane 7, Figure 2.3).  The low activity of  

CuAβ1-20 without H2O2 indicates a metal-centered activation of peroxide, such as the 

formation of a Cu2-peroxo center found in many Cu complexes23,24 which subsequently  

results in oxidative damage to dsDNA.  To distinguish the reaction pathways of oxidative 

DNA cleavage by H2O2 in the presence and absence of CuAβ1-20, a time-course 

experiment was established (Lanes 11-15, Figure 2.3).  The reaction patterns of dsDNA 

cleavage in these two cases are clearly different.  In the absence of Aβ1-20, dsDNA is 

cleaved into small fragments without formation of a linear intermediate as evident by the 

faint band at 2.0 kbp.  The nature of the band is not clear at this stage and is not 

associated with Aβ.  The dsDNA cleavage by CuAβ1-20 in the presence of H2O2 is 

conformation-dependent, most active toward supercoiled dsDNA as evident by the 

accumulation of nicked-circular and linear forms with time in the reaction, likely due to 

the structural constraints of the supercoiled form.  The accumulation of the linearized 

form (middle bands) is indicative of double-stranded DNA cleavage, rather than a 

random single-stranded cleavage, which is a key trigger that can result in cell apoptosis.25  

The linearization of the plasmid via cleavage of double-stranded (ds) DNA is also 

characteristic of the cleavage pattern by DNA-recognizing agents such as Cu-

bleomycin.26 

False regulation of metal homeostasis and ROS physiology is closely related to aging 

and oxidative stress,6 wherein apo-Aβ1-20 seems to serve as a scavenger of metal ions due 
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to its large affinity constant with metal ions and a protective agent against oxidative 

damage of biological macromolecules by H2O2 based on the observations in this and 

other studies.27, 28  However, the presence of H2O2 can result in severe damage toward 

dsDNA and presumably other redox-sensitive biomolecules as well by metallo-Aβ when 

the metal ions are redox active as demonstrated herein. 

Kinetics and Mechanism of Oxidative Catalysis by CuAβ: To gain further insight into 

the mechanism for the oxidation activity of CuAβ1-20 and its interaction with H2O2, the 

catechol analogue 1,2,3-trihydroxylbenzene (THB) was utilized to provide detailed 

kinetic information owing to its easily accessible oxidation state which also has been 

utilized for investigation of oxidative activities of metal complexes.29  The oxidation rate 

of THB by 7.5 µM CuAβ1-20 was determined at different values of [THB] in the presence 

of H2O2 at various concentrations (Figure 2.4), which reached saturation at high THB 

concentrations.  This saturation pattern suggests a possibility of pre-equilibrium kinetics.  

The rate law for this reaction mechanism can be expressed as in Eq. (1), assuming that 

the concentration of the intermediate THB-CuAβ1-20 complex is much lower than that of  

 

the unbound THB in which K’app = (k–1 + kcat)/k1 is the virtual dissociation constant and k1 

and k–1 are the rate constants for the formation and dissociation, respectively, of the THB-

CuAβ complex.  The data can be well fitted to Eq. (1), yielding kcat = 0.00767 s–1 and 

K’app = 1.67 mM, and a second-order rate constant kcat/K’app of 4.59 M–1 s–1 for the 
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reaction in the presence of 16.0 mM (0.0544%) H2O2. This represents a 724 fold increase 

in terms of the first-order rate constant when compared to the auto-oxidation of THB 

under the same reaction conditions in the absence of CuAβ1-20 (determined to be k0 = 1.06 

× 10–5 s–1).  A plot of kcat as a function of [H2O2] from Figure 2.4 shows that kcat reaches a 

plateau at high H2O2 concentrations (inset, Fig. 1.4).  However, the kcat value does not 

reach zero at 0% H2O2 that is higher than k0 of the auto-oxidation of the substrate.  The 

oxidation reaction in the absence of H2O2 was further explored and discussed in a later 

section below.  The plot seems slightly sigmoidal which indicates a possible presence of 

either a consecutive or a cooperative binding of H2O2 to the active center.  Since catechol 

oxidation involves 2-electron transfer which matches with the two-electron reduction of 

H2O2 to yield two oxides, a consecutive mechanism is not fundamentally necessary for 

the reaction to take place.  The data were fitted to the Hill equation to extract the Hill 

coefficient θ of 2.09 and kcat value of 0.00731 s–1 at 0% H2O2 (close to the value of 

0.0065 s–1 directly measured in the absence of exogenous H2O2 discussed later), 

indicative of the presence of weak cooperativity and H2O2-independent oxidative 

catalysis.   

Interestingly, the smaller fragment CuAβ1-16 showed more than 4-folds higher kcat of 

0.0340 s–1 for the reaction with the same concentration of H2O2.  However, its catalytic 

efficiency is only twice higher than the larger fragment in terms of the second order rate 

constant kcat/K’app (10.5 M–1 s–1), which suggests a participation of the last four C-

terminal hydrophobic residues (LVFF) in the reaction pathway.  The hydrophobic C-

terminus may influence substrate binding and product release as reflected by the higher  
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Figure 2.4. Effect of peroxide concentrations on the rate of THB oxidation in 

the presence of 7.5 µM of CuAβ1-20 in the presence of 1.6 (●), 3.2 (○), 16.2 

(□), 32.3 (▼), 64.6 (♦), and 70.0 (∆) mM H2O2 (HEPES buffer of 100 mM at 

pH 7.0 and 25.0 °C).  The dotted line is CuAβ1-16 in the presence of 16.2 mM 

H2O2.  The inset shows the first order rate constant kcat as a function of 

hydrogen peroxide, wherein the solid trace is a fitting of the data to the Hill 

equation by taking into consideration of an activity at 0% H2O2. 
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K’app and kcat values for CuAβ1-16 (K’app = 3.23 mM).  This observation suggests that the 

C-terminus is close enough to the metal center to influence THB binding or a transition-  

state conformational change that affects both the binding of THB and the turnover of the 

reaction.   

It has previously been documented that H2O2 and other ROS generated by metallo-Aβ 

may play a role in the pathology of AD.27,28,30 Since the local concentration of metallo-

Aβ in an AD brain can reach sub-mM range,7 the above observation implies that a 

significant rate acceleration in redox reactions can be expected at a location where H2O2 

is produced.  This rate enhancement in the brains of AD patients can be metabolically 

catastrophic.  In the studies shown here, I have further specified the fate of H2O2 in 

metallo-Aβ-associated redox reactions.   

To further analyze the role of H2O2 in the reaction pathway, a saturation profile was 

constructed with a fixed amount of the substrate THB at 6.0 mM.  Under such conditions, 

the reaction reaches plateau at [H2O2] near 70.0 mM or 0.238% (Figure 2.5).  The results 

can be well fitted to a pre-equilibrium kinetics (Eq. 2).  This kinetics further corroborates 

a metal-centered mechanism as described above.  

 

The rate of acceleration against the background oxidation of THB at saturating [H2O2] is 

approximately 6,000 folds (background rate constant ko = 1.14 × 10–5 s–1) with kcat =  
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  Figure 2.5. H2O2 saturation profile of CuAβ1-16 (o) and CuAβ1-20 (●) activity at a fixed 

 [THB] of 6.0 mM (HEPES buffer of 100 mM at pH 7.0 and 25.0 °C).  The inset shows that 

DMSO (o) and mannitol (•) do not inhibit the oxidation of THB by CuAβ.   
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0.066 s–1 and kcat/K’app = 37.2 M–1 s–1.  The hydrophobicity at the C-terminus does not 

affect the binding of H2O2 as reflected by the similar apparent virtual dissociation  

constant K’αpp between CuAβ1-20 and CuAβ1-16 (17.3 and 16.6 mM, respectively).  

Qualitatively, since the kcat value is small, the K’
app value is expected to be closer to the 

dissociation of the CuAβ-THB complex.  The binding of each H2O2 molecule in this case 

may not yield a complete turnover, suggesting that formation of the intermediate Cu-

peroxo active center is not favorable under the experimental conditions which may well 

be the rate-determining step. This result corroborates with chemical model studies of 

catechol oxidase and tyrosinase in that a dinuclear Cu-peroxo intermediate is often short-

lived and thermodynamically unstable.24,31  

Because the involvement of free radicals in the redox chemistry of metallo-Aβ had 

been implicated in previous reports,7 different amounts of DMSO and mannitol, two 

common scavengers for superoxide free radical and hydroxyl free radical,37,32 were added 

to the reaction solution separately with saturating concentrations of H2O2 and THB.  No 

noticeable effect on the reaction rates was observed under the experimental conditions 

(Figure 2.5, inset).  However, this does not discount possible free radical generation since 

the free radicals may well be metal-centered and free-radical oxidation in solution may 

not be the predominant pathway in the oxidation of THB catalyzed by CuAβ1-20.  We 

have established here a metal-centered oxidative catalysis by CuAβ1-20 and CuAβ1-16 

which can not only generate H2O2 as noted previously30 but also activate H2O2 for 

possible oxidation of biomolecules.33 
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Since both H2O2 and THB can interact with the metal center and are considered 

“substrates” for CuAβ, it is imperative to further narrow down the mechanism about how 

these two substrates interact individually with the metal center.  For this purpose, the 

redox indicator 3-methyl-2-benzothiazolinone hydrazone (MBTH) was used to probe the 

oxidation product of THB in the absence of H2O2.  MBTH is a common indicator used in 

catechol oxidase assay which forms a red adduct with the o-quinone products 

instantaneously.16  The rate for the oxidation of a catechol into its corresponding o-

quinone can thus be easily monitored colorimetrically as the oxidation is the rate-limiting 

step.  The rate for the oxidation of THB by CuAβ1-20 in the absence of H2O2 as a function 

of [THB] is not linear which can be well fitted to pre-equilibrium kinetics to give kcat = 

0.0065 s–1 and K’app = 2.0 mM.  The first order rate acceleration of THB oxidation here is 

650 folds with respect to the auto-oxidation (i.e. kcat/ko; ko = 1.06 × 10–5 s–1).  This 

oxidative reaction is much less significant in terms of rate acceleration than that in the 

presence of a saturating amount of H2O2 described above.  Here, catechol is possibly 

oxidized by CuAβ in form of a dinuclear Cu2+ center via 2-electron transfer to afford 

2Cu+ and o-quinone product.  The reduced 2Cu+ in turn can bind O2 to form a dinuclear 

Cu2+-peroxo center and follow the catalytic pathway as the CuAβ/H2O2 system discussed 

above.  Because a bi-substrate mechanism was implied from our results (i.e. both THB 

and H2O2 show saturation), further analysis of the data was performed.  The Hanes 

analysis was used to minimize the error across the concentration range (Figure 2.6A).34  

The virtual dissociation constant K’app for both substrates cannot be resolved only from 

the primary nonlinear fitting without analyzing their combined effects.35  It is thus 
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important to determine the rates at varying amounts of H2O2 when holding THB constant 

and vice versa.  The data in Figure 2.4 were fitted to a two-substrate random-binding 

mechanism according to Equation 3 (Figure 2.6A),34 wherein the binding of THB and 

H2O2 to CuAβ1-20 was assumed to be random and in rapid-equilibrium with a subsequent 

ordered product release.  Under these conditions, a simple conversion to a secondary plot 

of the slope (slope = (1+ K’/[H2O2])/Vmax) and the y-intercept (y intercept = 

(K’app/Vmax)*(1+ Ki/[H2O2] ) in Figure 2.6B versus 1/[H2O2] yields K’ and K’α, the true 

values for the virtual dissociation of H2O2 and THB, respectively, and the intrinsic 

affinity constant of H2O2 Ki .  Moreover, if any cooperativity is present in this bi-substrate 

reaction mechanism, it would be revealed by the ratio of K’app/K’.  For a random 

equilibrium mechanism a ratio of K’app/K’ between 1 and 5 would suggest little 

cooperativity.35  In the oxidative catalysis by CuAβ1-20, the K’app/K’ ratio is 2.85 for THB 

oxidation and K’αapp/K’α is 1.62 for H2O2 which indicates little cooperativity.  It is 

important to note that based on the data alone it is difficult to distinguish between an 

ordered sequential-binding mechanism and the mechanism herein proposed.34 However, a 

random equilibrium phase is a sound assumption since both THB and H2O2 can interact 

with the metal centers separately.   

In our proposed reaction mechanism, only when both THB and H2O2 substrates bind to 

the metal-center can productive turnover be observed with second-order rate constants of 

8.66 and 15.6 M–1s–1 for the oxidation of THB by CuAβ1-20 and CuAβ1-16, respectively, in 
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the presence of H2O2 (whereas molecular O2 serves as the second substrate in the absence 

of H2O2).  This pathway differs from the previously proposed mechanism in the redox 

cycling of metallo-Aβ wherein the presence of the thioether group of Met35 was 

accounted for the reduction of the metal center.7  The results presented here indicate 

substrate-mediated reduction of the metal center (since Met is absent in the studies) as  

well as oxidation of the substrate by metal-activated H2O2.  However, our data do not 

discount the possibility of the involvement of Met in the reductive pathway in Aβ1-40/42.  

Regardless, the redox chemistry of CuAβ presented here shows an important mechanism 

for possible destructive actions in Alzheimer’s disease. 

Taken together, the metal-centered redox cycle of CuAβ action in this study 

seems to match the mechanism of the dinuclear Cu-containing catechol oxidase, wherein 

the oxidation of the substrate takes place both in the presence and absence of H2O2.38,39  

Since the oxidation of catechols is a two-electron transfer process, the involvement of a 

dinuclear Cu center is thus a preferred pathway as in the case of the enzyme.  In the 

presence of THB and H2O2, the dinuclear µ-η2,η2-peroxo-Cu2+
2-THB transition state is 

eventually formed by assembling two metal centers together via the bridging peroxo as in 

the case of many mononuclear Cu2+ complexes23,24 (Figure 2.7, steps A–C), which is 

followed by 2-electron transfer from the bound peroxide to the bound catechol (likely 

through the metal center) to yield Cu2+
2-µ-OH and o-quinone to complete a catalytic 

cycle (step D).  Here, the complexes oxy-Cu+
2, Cu2+

2-µ-(η2,η2-peroxo), Cu2+
2-µ-(η1,η1- 

.  
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Figure 2.6. Hanes analysis of the kinetic data from Figure 4.  The plots in A yield the 

apparent virtual dissociation constant for THB.  The re-plot of the slope (●)and y-

intercept (○) from A reveals dissociation constants for THB (K’α = 0.41 mM) and 

H2O2 (Ki  = 17.3 mM) in a bi-substrate reaction.  
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peroxo), and Cu3+
2-(µ-oxo)2 (B) are isoelectronic24 which are not distinguishable in our 

study.  In the absence of H2O2, the oxidation of the bound THB is achieved by 2-electron 

transfer to the dinuclear Cu2+
2 center to yield Cu+

2 (steps F–G) which is followed by O2 

and THB binding to regenerate the THB-Cu2+
2-η2-peroxo transition state (steps H, B, and 

C). The binary and the ternary complexes then follow the same pathway as the case in the 

presence of H2O2 for another turnover.  H2O2 is also generated according to this 

mechanism under reducing conditions (steps E and I), which has been previously  

observed30 and can serve as a competing reaction pathway toward the oxidation of 

catechols (steps C, D). 

The mechanism of oxidative “chemical nucleases” has been thoroughly studied 

and reviewed.36 According to the studies of some simple chemical nucleases such as Cu-

1,10-phenanthroline, a reduced state of the metal center (by a reducing agent) is required 

for catalysis in the presence of O2.  In our experiments, however, the absence of a 

reducing agent to convert Cu2+ to Cu+ and the use of H2O2 as the oxidation agent suggest 

a different oxidative pathway.  Moreover, the free radical scavenger37 dimethyl sulfoxide 

(DMSO) did not inhibit the reaction, suggesting the absence of free radicals to induce the 

oxidative damage.  On the basis of the results shown here, we propose a η2-peroxo-

bridged dinuclear Cu2+ active center for CuAβ1-20 as observed in a number of chemical 

model systems23 and in catechol oxidase, tyrosinase, and hemocyanin.38,39  The nature of 

this transient η2-peroxo species and its attack on the substrates, although thoroughly  
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Figure 2.7.  Proposed mechanism for the oxidation of THB by CuAβ in the presence 

(steps A–D) and absence of H2O2 (steps F–H and B–D).  The production of H2O2 

under reduction conditions (steps E) is also consistent with this mechanism. 
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studied, still has key mechanistic questions to be answered, such as the true structure of 

reaction intermediates, the role of substrate in the reaction mechanism, rate determining  

steps in catalysis, and specificity of metal cofactor for the function of enzymes like 

catechol oxidase, tyrosinase, peptidylglycine monooxygengase, methane 

monooxygenase, fatty acid desaturase, and ribonucleotide reductase.40–42   

 It has been proposed that substrate accessibility in the active site after O2 binding 

plays a key role in the action of these proteins.40,43 Consequently, a reversible O2 binding 

has been demonstrated in hemocyanin because of the lack of substrate accessibility, 

wherein bulky substrates such as aromatic systems and the ribose moiety of DNA may 

not easily gain access to the O2-binding active center of the proteins.  However, studies of 

catechol oxidase and tyrosinase have shown the production of hydroxylated phenols and 

ortho-quinones, reflecting that substrates bind directly to the dinuclear Cu2-η2-O2 active 

center which enables a direct attack on the substrates by the peroxo unit.44,24   

 

Metal Binding and Structure: Detailed information about the metal-binding ligands 

and geometry of the metal site is needed to gain further insight into the metal-centered 

redox chemistry and to elucidate any structure-function correlation important for the 

action of metallo-Aβ.  Since activity is an excellent probe for monitoring reaction 

mechanism, it is thus chosen as a probe for the determination of the metal-binding 

stoichiometry of metallo-Aβ.  Upon introduction of Cu2+ to Aβ, oxidative activity can be 

measured as described above.  It is evident from the data that metal binding reaches 

saturation at slightly above 1:1 ligand-to-metal ratio (Figure 2.8).  Despite a previous  
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Figure 2.8.  Cu2+ titration toward Aβ1-20 ( ) and Aβ1-16 (●) monitored with their 

oxidation activities (100 mM HEPES buffer at pH 7.0 and 25.0 °C).  The dotted 

curves show the best fittings to a noncooperative M+L ↔ ML equilibrium.  Solid 

curves are the nonlinear fittings to the Hill Equation which yield Hill coefficients of 

1.94 and 3.27 for Cu2+ binding to Aβ1-16 and Aβ1-20, respectively. 
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EPR study which indicate the binding of two Cu2+ ions to Aβ,45 our result indicates the 

active species is a 1:1 CuAβ complex.  Both a noncooperative binding equilibrium (a  

quadratic pattern) and a cooperative equilibrium (a sigmoidal pattern) were used to fit the 

data.  It is evident from the fitting that the shorter CuAβ1-16 fits equally well to both 

binding patterns with a metal-to-ligand stoichiometry of 1 to 1, whereas CuAβ1-20 seems 

to fit better the cooperative binding pattern.  The binding of Cu2+ to Aβ1-16 gives a Hill 

coefficient θ of 1.94, while the binding to Aβ1-20 shows a higher cooperativity with θ of 

3.27.  This result is consistent with previous reports of cooperative metal binding to the 

entire Aβ determined on the basis of quantitative precipitation.46  The results presented 

here further indicate the presence of cooperativity in the oxidative activity as well as 

metal-binding.  The higher C-terminal hydrophobicity of Aβ1-20 may influence 

intermolecular interactions, resulting in a more apparent cooperativity.  The data were 

also analyzed to determine whether or not there were possible inactive dimer 

conformations of this metallopeptide by plotting activity as function of the square root of  

metal ion concentration as previously described.47  However, the data do not reflect the 

existence of such equilibrium in this reaction pathway, adding supporting evidence to the 

dinuclear metal-centered redox mechanism herein proposed.  Dissociation constants (Kd) 

for metal binding to Aβ can be extrapolated from both fits with values of 3.96 and 4.30 

µM for CuAβ1-16 and CuAβ1-20, respectively.  Since activity serves as the probe here, the 

values obtained above are thus the intrinsic dissociation constants attributable to the 

active CuAβ complexes and are not affected by coagulation equilibrium for Aβ.  The 

intrinsic dissociation constant for metal binding in CuAβ1-40 is likely to be in the same 
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range of ~4 µM for CuAβ1-20 and CuAβ1-16 owing to their probably similar metal-binding 

configuration.  Indeed, dissociation constants in the range of ~0.1 µM for CuAβ1-28 and 

~2 µM for CuAβ1-40 and CuAβ1-42 were determined with ligand-competition45 and direct 

fluorescence measurement.48  An apparent dissociation constant Kdapp of 0.50 pM for 

Cu2+ binding toAβ1-40 was determined based on the formation of CuAβ1-40 coagulates,46 

which can be dissected into the intrinsic metal dissociation constant KCu of ~4 µM and the 

dissociation constant of CuAβ1-40 coagulates Kco ~0.13 µM (i.e., Kdapp = KCu × Kco). The 

much smaller dissociation constant of 6.3 aM for Cu2+ binding toAβ1-42 would thus afford 

an apparent dissociation constant of CuAβ1-40 coagulates in the range of 1.6 pM.  A recent 

report indicates that trace amounts of metal ions can significantly affect Aβ coagulation, 

it is thus suspected that the dissociation constants may be under estimated based on the 

coagulation.49  I report in this dissertation a direct and reliable means for the 

determination of metal binding to soluble Aβ fragments which is not complicated by the 

formation of the coagulation as previously observed46 that can be influenced by other 

factors, such as trace amount of metal ions.49 

To further investigate the metal-coordination environment, the electronic spectrum of 

CuAβ1-20 was obtained (Figure 2.9).  The spectrum reveals a typical type-2 copper center 

with d-d transitions showing λmax at 610 nm (107 M–1 cm–1), clearly distinguishable from 

the near IR absorption at 820 nm for aqueous Cu2+ solutions.  This absorption is 

consistent with that of the “CuH2L” species of acetyl-Aβ1–16 with three coordinated His 

side chains in a potentiometric study50 (617 nm and 117 M–1 cm–1) and another study45 

(610 nm and ~50 M–1 cm–1 which seems to be too low an absorptivity51).  The result  
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     Figure 2.9. Electronic spectra of Aβ1-20 with 0.5 equivalents (solid 

trace) and 1.0 equivalent Cu2+ (dashed trace) referenced against apo Aβ1-20 

(100 mM HEPES buffer at pH 7.0).  The dotted trace is the difference 

spectra of 1.4 and 1.0 equivalents of Cu+2 in Aβ1-20, showing no further 

increase in the d-d transition after the binding of one equivalent of Cu2+. 
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agrees well with a tetragonally distorted octahedral environment51,52 for the Cu2+ in 

CuAβ1-20.  Upon addition of more than one equivalent of metal, the spectrum does not  

change.  This is consistent with the results when activity is used as the probe to monitor 

metal binding (Fig. 2.8), wherein one equivalent Cu2+ is determined to bind to one 

peptide.  It is also worth noting that there are no intense transitions in the near-UV range 

that can be possibly assigned to Tyr-to-Cu2+ charge-transfer transitions as observed in the 

Cu2+-substituted proteases astacin and serralysin.53 

The metal coordination chemistry was also investigated by the use of Co2+ as an 

NMR probe.  Co2+ has been well demonstrated to be an excellent probe for the 

investigation of metal-binding sites in a number of metalloproteins, including Zn and Cu  

proteins.54,55 Although Aβ1-20 has four additional hydrophobic amino acids on the C-

terminus, the conformations of the two peptides in d6-DMSO are similar as they show 

nearly identical 1H NMR spectra (Figure 2.10).  The signals due to L16VFF20 side chains 

in Aβ1-20 are clearly observed when compared with the spectrum of Aβ1-16, wherein LV 

are seen at ~0.6 ppm and FF ~7.2 ppm.  This similarity reflects their similar 

configuration.  There are two solvent exchangeable signals in the 14–16 ppm range 

(imidazole N-H signature chemical shifts56) with a 1:2 ratio in intensity, corresponding to 

the three His side chains (insets, Figure 2.10 A and B).   

Upon Co2+ titration, the intensities of these solvent exchangeable His-imidazole 

signals gradually decreased which was accompanied by the appearance of three far-

downfield paramagnetically shifted signals in the region of 40–80 ppm as shown here for 

Aβ1-20 (Figure 2.10C).  These far-shifted signals are also solvent exchangeable and 
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correspond to the chemical shift of the solvent exchangeable signal of a paramagnetic 

Co2+-bound imidazole group of a histidine residue (which cannot be due to dipolar shift 

of unbound His residues since the octahedral Co2+ center is expected not to possess 

magnetic anisotropy) as observed in many Co2+-substituted metalloproteins.54,55  These 

three solvent exchangeable NH signals further confirms the involvement of all three 

histidine residues in Aβ1-20 for metal binding, consistent with previous Raman 

spectroscopic studies,9 and is indicative of the absence of a bridging histidyl imidazole 

(in contrast to previously suggested9,12) which would result  in the loss of an imidazole 

NH signal.   

Tyr10 was suggested to be a possible ligand for Cu2+ and Fe3+ binding,9,12,57 but 

was suggested not to be a ligand in other studies.50  The 1H NMR signals of Tyr10 (the 

two asterisked doublets centered at ~6.7 ppm in Figure 2.10 do not show any noticeable 

change upon the addition of the paramagnetic Co2+ ion.  The binding of a Tyr-phenol 

group to Co2+ is expected to exhibit paramagnetically shifted 1H NMR signals of the 

bound phenol group outside the diamagnetic region as previously observed.58  This result 

indicates that this Tyr is not a metal-binding ligand, consistent with the lack of charge-

transfer transitions for a possible Tyr-Cu2+ binding as described above.  Our results also 

do not support the binding of the N-terminal amino group to the metal as previously 

suggested.45  This binding mode for paramagnetic Co2+ would show far upfield-shifted 

NH2 signal(s), a downfield-sifted CαH proton, and slightly upfield-shifted CβH2 protons 

owing to spin polarization, which were not observed.55   
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C
        

 
 
 
Figure 2.10.  1H NMR spectra of Aβ1-20 (A) and Aβ1-16 (B) in DMSO. The 

insets show the imidazole N-H solvent exchangeable signals of His which 

disappear upon addition of a drop of D2O (remain intact with same amount 

of H2O).  These signals disappear upon addition of paramagnetic Co2+, with 

concomitant appearance of three solvent exchangeable hyperfine-shifted 

signals in the far-downfield region as shown here for Co-Aβ1-20 (C).  The 

asterisked signals in A and B are due to Tyr ring protons which remain the 

same upon Co2+ binding.
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Molecular mechanical calculations have been applied to determine the structure of 

Aβ1-16 and its metal-binding domain. The energies for different metal-binding modes 

have been calculated by the use of the MM3 force field and a simulated water droplet to  

solvate the peptide.  Binding of Cu2+ to His13 and His14 yields the lowest energy of –385 

kcal/mol as compared to all other possible binding modes in the peptide. The binding to 

all three His side chains yields a distorted octahedral geometry (with 3 open coordination 

sites presumably occupied by water molecules) and a slightly higher energy at –363 

kcal/mol (Figure 2.11).  The energy difference between these two metal-binding modes  

may be low enough to be easily overcome at room temperature.  Extensive H-bonding are 

observed in this calculated structure, particularly Glu3-Arg5-Asp7 H-bonding  

interactions may stabilize the structure to a great extend (dotted lines in Fig. 2.11).  The 

energies for Cu2+ binding to His6/13 and His6/14 are much higher at –125 and –210  

kcal/mol, respectively, and are not likely to be the metal binding modes for Aβ.  A 

histidine-bridged dimer form of the peptide previously proposed12 was also calculated  

which gave an unacceptably high overall energy of 52,500 kcal/mol.  The binding of 

Tyr10 along with the histidine residues is also highly unfavorable which puts undue stress 

on the phenol ring causing it to pucker and the peptide backbone to distort, with a high 

overall energy of 570 kcal/mol.  The recently suggested N-terminal binding mode (along 

with the binding of the 3 histidines) has also been calculated to give an unfavorable 

overall energy of 147 kcal/mol.  Since Cu+ can easily adopt a trigonal coordination 

sphere,52 a calculation with a fixed trigonal coordination was performed which yielded an 

energy of –318 kcal/mol.  The low energy difference between octahedral and trigonal  
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Figure 2.11- Proposed metal coordination and solution structure of CuAβ1-16 in a 

relaxed-eye stereo view based on NMR study of Co2+ binding and molecular 

mechanics calculations.  According to the molecular mechanical calculations both the 

two-histidine (H13/H14) and three-histidine binding patterns are stable, whereas NMR 

study suggests the latter binding pattern.  The dotted lines are H-bonds, which may 

prevent further bending of the peptide to allow the binding of the N-terminus to the 

metal as recently reported.45 
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geometries rationalizes the redox cycle of the Cu center in the catalysis of catechol 

oxidation.  The binding of the 3 His side chains to the metal renders one side of the metal 

center to have an open coordination sphere which can possibly bind H2O2 or O2 to form 

the dinuclear bridging η2-peroxo center described above.   

 

IV. CONCLUDING REMARKS 

 

The results presented here have added further insight and support to the structure and 

chemistry of metallo-Aβ which may assist better understanding of the neuropathology of 

Alzheimer’s disease.  A complete redox cycle for the action of CuAβ has been proposed 

from the kinetic studies which is consistent with the mechanism proposed for the 

dinuclear Cu catechol oxidase.  The results in this report, however, do not resolve the 

cause/effect debate about the role of Aβ in AD, but add more information to the 

chemistry of metallo-Aβ.  As a cause for AD, I have shown and quantified redox 

chemistry of CuAβ in this dissertation which can serve as a catalyst both in the absence 

and presence of H2O2 to cause severe oxidative damages in the brains of AD patients.  As 

an effect of AD, Aβ can be reasoned to be present as a regulator toward metal ion 

homeostasis due to its considerable metal affinities and its protective property toward 

oxidative DNA damage in the absence of Cu2+.  In the latter case, abnormal homeostasis 

of redox-active metal ions can leach the metal ions to yield metallo-Aβ that can undergo 

redox destruction of biomolecules.  I have presented data herein to revise the redox 

chemistry of the methionine-centered hypothesis by showing a metal-centered catalysis 
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as a significant contribution to the oxidative damage in the pathology of the 

neurodegenerative AD.  The fate of H2O2 generated by CuAβ in the presence of a 

reducing agent previously observed or an electron-donating substrate shown here has also 

been established and quantified with exogenous addition of this oxidant.  Further studies 

currently under way that focus on the structure-activity relationship of metallo-Aβ are 

expected to shed light on the roles of metal ions and Aβ in AD and with hope to provide 

useful information for treatment and prevention of Alzheimer’s disease. 
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CHAPTER III. CATECHOL OXIDASE AND PHENOL MONOOXYGNEASE 

ACTIVITIES OF CuAβ1-20
‡ 

 

 

I. INTRODUCTION 

 

Over the past few years an enormous effort has been directed toward the investigation 

of the metal-dependent mechanisms that lead to the neuropathology of Alzheimer’s 

disease (AD).1  The self-assembled metallo-β-amyloid (Aβ) peptide fibrils are the 

hallmark of this disease2 and have been attributed to FeIII and CuII-centered generation of 

H2O2 under reducing conditions which has been postulated to be of significant 

importance in connection with neuropathy in AD.3,4  However, an area of oversight has 

been the detailed chemical processes associated with the neuropathology of AD, besides 

the general acclaimed “ROS” (reactive oxygen species, including H2O2) assault.5  Hence, 

                                                 
‡ This work has been published: G.F.Z. da Silva, L.-J. Ming, Alzheimer’s Disease Related Copper(II)-β-

Amyloid Peptide Exhibits Phenol Monooxygenase and Catechol OxidaseActivities.  Angew. Chem. Int. 

Ed. (2005), 44, 5501-5504. 
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a better understanding of metal-centered redox chemistry and the mechanism for the 

generation of ROS and their fate can provide insight into potential strategies for 

prevention and treatment of AD.   

Several examples of redox chemistry in biological systems are known to be 

associated with di- or multi-nuclear “Type-3” Cu oxidases,6 which might be related to the 

redox activity of CuII-Aβ.1–4  A number of chemical model systems targeting Type-3 

copper centers have successfully been demonstrated to contain highly active isoelectronic 

copper-dioxygen species (i.e. CuII
2-µ-η1:η1-peroxo, CuII

2-µ-η2:η2-peroxo, and CuIII
2-bis-

µ-oxo) responsible for copper-dependent oxidation and hydroxylation reactions.6–9  

Despite the extensive modeling studies, peptide mimics of these enzymes have apparently 

been excluded from the studies.  CuII-Aβ seems to fill the gap since it is a natural-

occurring Cu-peptide complex demonstrated to exhibit oxygen-associated redox 

chemistry,1–4 although details about its oxygen binding and activation mechanisms is 

lacking.  I present herein results which bring together two distinct fields of research, AD 

and Type-3 copper centers.  The results elucidate that the CuII complex (CuAβ1-20) of the 

icosapeptidyl metal-binding domain of Aβ (DAEFR5 HDSGY10 EVHHN15 KLVFF20) 

exhibits metal-centered redox chemistry consistent with the mechanisms of the Type-3 

copper enzymes phenol monooxygenase (e.g., tyrosinase) and catechol oxidase. 
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II. EXPERIMENTAL 

 

Phenol Monooxygenase assay: Phenol hydroxylation and oxidation and catechol 

oxidation were performed as previously reported10 with minor changes to fit current 

studies.  Same molar concentrations of phenol or catechol and 3-methyl-2-

benzothiazolinone hydrazone (MBTH, which serves as an ortho-quinone indicator) were 

mixed in 100 mM HEPES at pH 7.00 in the presence of 5.0 µM (phenol 

hydroxylation/oxidation) or 0.50 µM CuAβ1-20 (catechol oxidation).  The red-adduct of 

the ortho-quinone product was monitored at 500 nm (ε = 32,500 M–1cm–1; cf. Figure 3.1)  

Auto-oxidation of phenol and catechol were determined under the same conditions 

without CuAβ1-20.  The 1-20 fragment of Aβ was synthesized at the Peptide Center of the 

University of South Florida.  The identity of the peptide has been confirmed with a 

Bruker MALDI-TOF mass spectrometer.   

 The rates were determined on a Varian CARY50 spectrophotometer equipped with 

a temperature controller.  The rate law for pre-equilibrium kinetics (Eq. 1), which CuII-

Aβ follows, is shown in Eq. 2, where kcat and K’app are the first-order rate constant and 

virtual dissociation constant, respectively, S is the substrate and vbackground is the auto-

oxidation rate. 

  
CuII-Aβ + S                   Aβ-CuII-S                CuII-Aβ + Prod.

k1

k-1

kcat

 

(1) 

  ν ν β
= +

+background
cat

app

k CuA S
K S
[ ][ ]

' [ ]
   (2) 
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Figure 3.1. The production of o-quinone from phenol in the absence of 

H2O2 is monitored by the increase in the absorption due to its adduct with 

MBTH.   
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The Hill equation can serve as a general model for cooperativity as reflected by the 

Hill coefficient θ which deviates from one in the presence of cooperativity (Eq. 3), 

wherein Kx is the intrinsic dissociation constant.   

  θ

θ

]CuAβ[
]CuAβ[

max +
=

x

o

KV
V  (3) 

In case of a bi-substrate catalysis, such as phenol hydroxylation/oxidation and catechol 

oxidation in the presence of H2O2, both substrates can interact with the metal center 

independently.  The data are fitted to the Hanes plot (Eq. 4) to yield true values of 

substrate dissociation constants K’.19  
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III. RESULTS AND DISCUSSION 

 

Catechol Oxidase activity: The metal-centered redox chemistry of CuAβ1-20 was 

probed using catechol and the much more inert phenol as substrates.10  The oxidation of 

catechol under aerobic conditions reaches a plateau at low-mM concentrations (Fig. 3.2).  

This saturation profile fits nicely to pre-equilibrium kinetics (Eqs. 1 and 2), affording kcat 

= 0.154 s–1, K’app = 0.35 mM and a significant second-order rate constant kcat/K’app= 440 

M–1 s–1 (● Fig. 3.2).  Since the formation of quinone from catechol is a two-electron 

oxidative process, the reaction is expected to follow the two-electron dinuclear reaction 

pathway for catechol oxidase,11 wherein the binding of catechol to the active-site di-CuII  
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Figure 3.2. Saturation profile for the oxidation of phenol (solid square), 

deuterated phenol (square), and catechol (solid circle) in the absence of 

H2O2.   
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center results in the reduction of the center to yield di-CuI with concomitant production of 

o-quinone.  The reduced di-CuI center can bind dioxygen to afford the active peroxo-

bridged di-CuII center, which can further oxidize a subsequently bound substrate.  H2O2 

can also be generated in this reaction pathway from the peroxo-bridged di-CuII center in 

the presence of a reducing agent, such as the substrate itself.  This H2O2 production 

pathway under reduction conditions is consistent with previous observations in AD 

studies.3  This catechol oxidase-like mechanism has also been observed in kinetic studies 

in several chemical model systems12 and in polyphenol oxidation by CuAβ1-20.13  It is 

noteworthy that recent density functional theory (DFT) results reported mixed valence 

CuII-CuI transition states,14 corroborating with the reduction pathway for the Cu center. 

Zn2+ dilution: I show in Chapter II that  the CuII:Aβ1-20 stoichiometry to be in 1:1 ratio 

for oxidative activity with three Nε-coordinated imidazole histidine rings as metal-

binding ligands.13  Since activity is an excellent probe for determining stoichiometry, 

gradual replacement of CuII in CuAβ1-20 with redox-inactive ZnII can serve as a practical 

method for addressing the nature of the metallo-active center by virtually “silencing” the 

active sites through the dilution with ZnII.  A linear correlation between the activity and 

the extent of of CuII in the ZnII dilution should be observed for simple 1:1 metal binding 

if there is no cooperativity and/or interactions between the active site CuII from different 

Aβ strands.  Conversely, a sigmoidal activity profile was observed as a function of mole 

fraction of CuII in Aβ1-20 toward the oxidation of the catechol derivative 3,5-di-tert-butyl 

catechol (DTC, kcat = 0.411 s–1 and K’app = 0.781 mM) which can be nicely fitted to the 

Hill equation (Eq. 3) with a Hill coefficient θ of 2.40 and r2 = 0.99 (Figure 3.3A, solid 
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trace).  The data clearly cannot be fitted well to a quadratic equation for 1:1 non-

cooperative binding mode (r2 = 0.91; dashed trace, Figure 3.3A).  These results imply a 

possible presence of a cooperative dinuclear active CuII center during the catalytic 

oxidation of catechol by CuAβ1-20, consistent with the catalytic cycle of catechol 

oxidase.11   

Effect of H2O2: The presence of the ROS H2O2 (25 mM) significantly enhances the 

turnover and catalytic efficiency of CuAβ1-20 toward catechol oxidation (Figure 3.4), 

yielding kcat = 0.531 s–1 and K’app = 0.342  mM and a significant second-order rate 

constant kcat/K’ = 1.51 × 103 M–1s–1 from the Hanes plot (to give K’; Eq. 4, Figure 3.5A)15 

for a random bi-substrate reaction, wherein the bindings of the two substrates H2O2 and 

catechol are independent of each other.  It is worth noting that the second-order rate 

constant for catechol oxidation is only about 20 times lower than that of the catechol 

oxidase from gypsywort.16  This pathway is consistent with the “peroxide shunt” in the 

action of catechol oxidase in the presence of H2O2, wherein a CuII
2-µ-η2:η2-peroxo 

intermediate is proposed to be the active species (cf. Fig. 2.7 A-D).6  The oxidation of 

catechol to form o-quinone in the absence and presence of H2O2 exhibits remarkable 3.25 

× 105 and 1.12 × 106 folds, respectively, rate acceleration in terms of the first-order rate 

constant kcat compared to that of aerobic auto-oxidation of catechol without CuAβ1-20 

determined to be ko = 4.74 × 10–7 s–1.   
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 Figure 3.3.  Oxidative activity of CuAβ1-20 toward the oxidation of DTC (A) and 

phenol (B) in the absence of H2O2 as a function of CuII mole fraction with a constant 

CuII + ZnII at pH 7.0 and 25 °C.  The solid traces are fittings to the Hill equation and 

the dotted traces are fittings to a quadratic binding pattern with metal:ligand = 1:1.   
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Figure 3.4. . The effect of H2O2 on the first order rate constant kcat toward 

the oxidation of phenol (solid square) and catechol (solid circle).   
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Figure 3.5. Hanes plot analysis of kinetic data from Figure 3.4. 
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Phenol hydroxylation: Owing to their inertness, metal-centered hydroxylation of 

phenol and derivatives, particularly polychlorophenols, poses some challenging tasks in 

chemical synthesis and ensvironmental detoxification and remediation17 and may provide 

further insight into the action of those metalloenzymes for arene monooxygenation.8,18  In 

addition to catechol oxidation described above, phenol was observed to be hydroxylated 

and oxidized by CuAβ1-20 in the presence of saturating amount of H2O2 (> 50.0 mM), 

wherein the formation of o-quinone exhibits rate constants of kcat = 0.213 s–1 and K’app = 

1.31 mM, and kcat/K’ = 457 M–1s–1 from the Hanes plot (Figs. 3.1and 3.2).  This result 

represents a remarkable rate acceleration of 4.6 × 106 folds for the ydroxylation/oxidation 

of phenol to form o-quinone in terms of kcat compared to that of aerobic auto-oxidation of 

phenol (measured to be ko = 4.6 × 10–8 s–1).  This reaction is expected to take place 

following a similar dinuclear mechanism as in the action of the di-Cu enzyme tyrosinase 

toward hydroxylation and oxidation of tyrosine, wherein the active center is believed to 

contain dinuclear µ-η2:η2-peroxo-CuII
2 on the basis of spectroscopic studies.8,14 

Cooperativity for the oxidation of both catechol and phenol in terms of kcat is 

observed upon titration of H2O2 as reflected in the sigmoidal activity profile with respect 

to H2O2 (Figure 3.4).  The data from the oxidation of catechol and phenol by H2O2 fit 

nicely to the Hill equation (Eq. 3), yielding Hill coefficients θ = 2.23 and 1.78, 

respectively.  Moreover, fitting of the rates to a random bi-substrate reaction mechanism 

yields corrected K’ values and a cooperativity index based on the ratio K’app/K’ (Fig. 3.5 

B), wherein a ratio of 1.70 for H2O2 in both phenol and catechol oxidations and 2.07 and 
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2.10 for phenol and catechol, respectively, also suggest a small cooperativity and their 

independent binding to the active center.   

Of particular interest is the observation of scarcely reported19 CuII-centered 

hydroxylation and oxidation of phenol aerobically without H2O2.  The production of o-

quinone from phenol catalyzed by CuAβ1-20 follows pre-equilibrium kinetics, yielding kcat 

= 3.90 × 10–3 s–1 and K’app = 1.23 mM (Figure 3.2) which represents a first-order rate 

acceleration of 8.67 × 104 folds with respect to aerobic auto-oxidation of phenol.  The kcat 

value is lower than that for catechol oxidation, indicating that the hydroxylation step here 

must be the rate-limiting step.  Otherwise, these two reactions would have similar kcat 

values attributed to the oxidation of a bound catechol upon hydroxylation of a bound 

phenol.  Moreover, the use of deuterated phenol as substrate shows significant kinetic 

isotope effect (KIE), wherein kcat values of 1.12 × 10–3 and 0.0442 s–1 are obtained in the 

absence (□ Fig. 3.2) and presence of 100 mM H2O2 which represent KIE of 3.46 and 

4.77, respectively.  The results indicate that hydroxylation and breakage of the o-C–H 

bond of phenol is the rate-limiting step, which is followed by a faster step to form o-

quinone.  The different KIE values for phenol hydroxylation in the presence and absence 

of H2O2 suggest that the rate-determining step in these two cases may be different and/or 

possibly involve additional pathways.  The K’app values are not significantly different 

between phenol and deuterated phenol (1.31 and 1.23 mM for the latter in the presence 

and absence of H2O2, respectively), suggesting that kcat does not significantly contribute 

to the magnitude of K’app and that they may have a similar binding mode.  The 

mechanistic reasoning (Figure 3.6) for the conversion of phenol to o-quinone may be  
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Figure 3.6.  Proposed mechanism for aerobic hydroxylation and oxidation of phenol in the 

absence of H2O2, wherein the binding of phenol and reduction of the metal center is a key 

step (A).  The binding of dioxygen and formation of superoxide (B) is proposed to be 

assisted by a dinuclear center.
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attributed to that the CuII/I redox equilibrium can be achieved upon phenol binding, 

followed by electron transfer to afford CuI and phenol radical which was suggested to be 

stabilized through resonance structure with the free radical situated at the ortho and para 

positions19a (step A).  This intermediate is then attacked by dioxygen followed by 

electron transfer to possibly form a CuII-superoxide center which may be further 

stabilized by a dinuclear center (step B).  The free radical was proposed previously to be 

attached directly by triplet dioxygen,19a which however is not symmetrically favorable.  

Coupling between the bound phenol radical and superoxide radical at an ortho position 

can then be expected to be a favorable step (step C), which is followed by transfer of 

electrons and an oxygen atom to afford the final quinone product (step D).  An 

involvement of a dinuclear center for the catalysis is possible as discussed below.  Since 

the hydroxylation and oxidation of phenol is a multi-electron transfer process, the 

involvement of two metal centers is suspected.  An activity profile is obtained for phenol 

oxidation similar to the case of the “ZnII dilution” experiment for catechol oxidation.  The 

data can be fitted equally well to the Hill equation (Eq. 3) to afford θ value of 1.80 (r2 = 

0.98) and a quadratic equation for single metal-binding (r2 = 0.98), consisting with either 

a mononuclear oxidation19 or a cooperative mechanism involving a dinuclear center,14 or 

a combination of both pathways. 

DCC optical titration: To monitor substrate binding, a slow substrate 4,5-

dichlorocatechol (DCC which is approximately 200 times slower in terms of kcat than 

catechol) was titrated to 0.2 mM CuAβ1–20 in the presence or absence of 100 mM H2O2 

and the electronic spectrum collected at 25 °C and pH 7.0 (Figure 3.4).  Similar spectra  
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Figure 3.7.  Optical titration of DCC to 0.2 mM CuAβ in the presence of 100.0 mM 

H2O2 in 100 mM HEPES at pH 7.0.  Analogous spectra were obtained in the absence 

of H2O2.  The inset shows the change in absorbance at 437 nm as a function of 

equivalents of DCC added, consisting with the formation of a 1:1 adduct. 
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were obtained, indicating that H2O2 was not involved in DCC binding to CuIIAβ under 

the experimental conditions.  The absorption at 437 nm increases upon addition of DCC 

and reaches saturation at >1.2 equivalents of its addition, which can be nicely fitted to 

single-substrate binding mode to yield a dissociation constant of 0.24 mM.  The result 

provides a direct evidence for catechol binding to the metal center, consistent with the 

observation in a chemical model20 and the mechanism proposed above. 

 

IV. CONCLUDING REMARKS 

 

 In conclusion, we have established the catalytic activities of CuAβ1-20 toward the 

relatively inactive (according to their ko values) catechol and phenol in the presence and 

absence of H2O2 in aqueous solutions near physiological conditions.  The reaction 

patterns are consistent with the mechanisms carried out by Type-3 copper centers as 

observed in catechol oxidase and tyrosinase and their dinuclear model systems.8,18  These 

results are unique thus far in metal-centered redox chemistry related to Alzheimer’s 

disease, and expected to offer further insight into the neuropathology of this disease since 

it has been suspected to connect with, in addition to many other factors, the oxidation of 

mono- and diphenol-containing neurotransmitters such as dopamine, epinephrine, 

norepinephrine, and serotonin.21,22  Furthermore, the connection of this highly reactive 

Cu-oxygen chemistry with Alzheimer’s disease can better define the role of metallo-Aβ 

in the neuropathology of this disease and possibly lead to different treatment strategies 

toward this disease.   
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CHAPTER IV. METALLO-ROS IN ALZHEIMER’S DISEASE: METAL-

CENTERED OXIDATION OF NEUROTRANSMITTERS BY Cu2+-β-

AMYLOID PROVIDES AN ALTERNATIVE PERSPECTIVE FOR THE 

NEUROPATHOLOGY OF ALZHEIMER’S DISEASE‡ 

 

 

I. INTRODUCTION  

 

The generation of reactive oxygen species (ROS), including superoxide, peroxide, 

and free radicals, is associated with normal redox metabolic pathways as side-tracks 

which can be regulated through the action of superoxide dismutase, catalase, and 

some reducing agents under homeostasis.1,2  However, long-term effects of such 

oxidative chemical imbalance in normal and disease states can be expected.  ROS are 

often considered the culprits responsible for the devastating effects of oxidative 

stress,3 concerning cancer, aging, heart diseases, arthritis, diabetes, and the etiology of 

neurodegenerative disorders such as Parkinson’s disease and Alzheimer’s disease 

(AD).4  AD affects primarily the elderly which causes considerable distress of the 

patients and emotional sufferings of their families and close friends.  One mechanism 

                                                            
‡ This work has been published: G.F.Z. da Silva, Ming L.-J, “Metallo-ROS” in Alzheimer’s Disease:  
Metal-Centered Oxidation of Neurotransmitters by CuII-β-Amyloid Provides an Alternative 
Perspective for the Neuropathology of Alzheimer’s Disease. Angew. Chem. Int. Ed. (2007), 46, in press. 
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proposed for the neurodegeneration in AD focuses on amyloid-β peptides (Aβ) and 

their metal complexes through formation of plaques and fibrils and generation of the 

ROS H2O2 and free-radicals.5–9   

Aggregation of Aβ of 40 or 42 amino acids (DAEFR HDSGY10 EVHHQ 

KLVFF20 AEDVG SNKGA30 IIGLM VGGVV40 IA) in the brain is the hallmark in 

AD neuropathology induced by metal binding10–12 and is usually found as metal-

containing plaques and insoluble fibrils. Similar pathological effects are also found in 

transgenic mouse models with human Aβ.13,14 Moreover, soluble fragments of Aβ can 

be generated in vivo by insulin degrading enzyme as well as α and β-secretases.15,16  

Nevertheless, the cause or effect connection of the metallo-Aβ plaques with AD is 

still under debate.17–19 Despite immense endeavor in Aβ research, the potential risk of 

metal-centered oxidative catalyses by metallo-Aβ has been overlooked.20 The CuII 

complexes of metal-binding domains of Aβ (CuAβ) have recently been demonstrated 

to exhibit metal-centered oxidative catalysis, consistent with Type-3 copper 

oxidases.21,22  To verify the bio-relevance of this metal-centered catalysis, we have 

determined the oxidation of several catecholamine and indoleamine neurotransmitters 

catalyzed by CuAβ1–40 and two metal-binding N-terminal fragments CuAβ1–16 and 

CuAβ1–20 under various biomimetic conditions.  The studies described herein are 

expected to provide chemical basis for better understanding the etiology of AD. 

 

II. EXPERIMENTAL 

The peptides Aβ1–16(20) were synthesized at the Peptide Center of the University 

of South Florida, and confirmed with a Bruker MALDI-TOF mass spectrometer.  

Aβ1–40 was purchased from Biopeptide Co., LLC (San Diego, CA).  The CuII complex 
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of Aβ1–40 was prepared according to literature procedures23 and concentration 

determined with a standard BCA assay.  The CuAβ stock solutions were quickly 

aliquoted to prevent concentration deviations caused by aggregation.    

Kinetic assays: Kinetic measurements were performed and analyzed as previously 

described 21,22 by the use of MBTH as a o-quinone indicator (εproduct = 32,500 M–1 cm–

1 for phenol and catechol24 and 28,900, 27,200, and 27,500 M–1cm–1 for Dopa, 

dopamine, and epinephrine/norepinephrine, respectively,25 and 35,200 M–1cm–1 for 

serotonin and 5-hydroxytriptophan).  The data are analyzed with the bi-substrate 

Hanes plot for experiments in the presence of H2O2 to yield the apparent KS and 

intrinsic KSi dissociation constants for the neurotransmitters and H2O2.37  

 

III. RESULTS AND DISCUSSION 

 

Dopamine has been directly linked to the neurodegenerative Parkinson’s 

disease.26  Moreover, symptoms of Parkinson’s disease have also been recognized in 

AD patients.27  Thus, disturbance of dopamine metabolism may be closely associated 

with AD.  Dopamine is effectively oxidized aerobically to dopaquinone by CuAβ1–40 

at pH 7.0, reaching saturation at high dopamine concentrations (Fig. 4.1; Table 1) 

which is consistent with pre-equilibrium-like kinetics.  There is an apparent 

cooperativity in the catalysis that is not usually expected in simple monomeric 

systems, which may be due to the tendency of the peptide to coagulate and/or the 

formation of a dinuclear center during catalysis.  Fitting the results to the Hill 

equation gives kinetic constants kcat = 7.48 × 10–4 s–1 and kcat/K’ = 2.77 M–1 s–1 and a 

Hill coefficient θ = 1.48.  This reaction shows 85-fold rate enhancement relative to  
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Figure 4.1. Oxidation of catechol (o) and dopamine (•) by 1.47 µM 

CuAβ1-40 in 100 mM HEPES at pH 7.0 and 25° C. Dashed traces are 

fittings to simple pre-equilibrium kinetics while the solid traces are the 

fitting to the Hill equation. The inset shows the effect of H2O2 on kcat 

which also show the presence of cooperativity. 
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CuAβ kcat (10–3 s–
1) 

K’ (mM) kcat/K’ (M–1s–
1) 

krel
 

1–40 0.748 0.27 2.77 85 

1–20 11.6 0.90 12.9 1,320 

1–16 28.0 0.31 90.3 3,180 

1–40b 5.61 0.27 21 312 

1–20b 99.0 0.52 190 5,530 

1–16b 230 0.68 339 12,700 

 

Table 2. Kinetic parameters for dopamine oxidation by Aβa  in 100 mM 

HEPES buffer at pH 7.0 and 25 °C.  b in the presence of 20 mM H2O2 
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auto-oxidation of dopamine.  The shorter CuAβ1–20 and CuAβ1–16 do not exhibit the 

apparent cooperativity and exhibit 16 and 37-fold, respectively, higher activity than 

CuAβ1–40 toward dopamine oxidation in terms of kcat.  Catechol oxidation shows the 

same catalytic trend (Fig. 4.1; Table 1), with CuAβ1–40 showing cooperativity (θ = 

2.7) and CuAβ1–16 exhibiting the highest activity.  The results herein indicate that the 

soluble CuAβ fragments may be more severe in causing oxidative stress in the brain 

of AD patients than the coagulation-prone CuAβ1–40. Recent studies also suggested 

pathological significance of soluble forms of Aβ.28 

Collectively termed catecholamines, dopamine, epinephrine, norepinephrine, and 

Dopa are catechol-containing neurotransmitters (whereas serotonin and its precursor 

5-hydroxytryptophan are indole-containing) which are involved in cognitive, 

behavioral, physical, physiological, and psychological functions.29  Oxidation of these 

molecules may cause severe alteration in bioactivity, eventually leading to neuronal 

death.30  Metabolic malfunctions of neurotransmitters are known phenomena in the 

physiology of AD31,32 and have also been suggested to be related to the 

neuropathology of this disease.31–34  However, a chemical mechanism for the 

neurotransmitter malfunction in AD is still unknown.  These catecholamine 

neurotransmitters are found to be effectively oxidized aerobically to their respective 

o-quinone products by CuAβ1–20 (Fig. 4.2, Table 1).  Herein, CuAβ1-20 is shown to 

significantly accelerate aerobic oxidation rate of these neurotransmitters by 333–2,420 

times in terms of kcat relative to auto-oxidation rate constant ko.   
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Figure 4.2.  a) Catecholamine oxidation by 2.5 µM CuAβ1-20 in the absence of H2O2 

toward dopamine (●), (+/–)epinephrine (▲) and (–)norepinephrine (■), L-DOPA (○) 

and D-DOPA (□).  The solid lines are the best fit to an enzyme-like pre-equilibrium 

kinetics).  b) The dependence of the first-order rate constant on H2O2 toward the 

oxidation of dopamine (●), (+/–)epinephrine (○), and (–) norepinephrine (▼). 
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Compared to that of catechol, the auto-oxidation rates of these neurotransmitters 

are faster by nearly 10 times in terms of ko.  However, their oxidation rates by CuAβ 

are ~130–980-fold slower than that of catechol, reflecting their higher resistance to 

oxidation by CuAβ by ~103–104-fold relative to catechol oxidation.  The relatively 

higher stability against oxidative damage entitles these molecules better suited for the 

purpose of neurotransmission.  Dopa shows a lower reactivity than other 

catecholamines, likely due to the inductive effect of the carboxyl group on the side 

chain.  Chirality of these neurotransmitters does not appear to play a role in this 

oxidation chemistry (Table 2). 

The ROS H2O2 has been commonly suggested to be a culprit causing the 

oxidative stress in AD.4,6  However, this ROS alone at 50.0 mM does not significantly 

affect the oxidations of neurotransmitters (footnote b, Table 2).  Conversely, 

oxidations of these neurotransmitters by CuAβ in the presence of >15 mM 

(>0.051%)35 H2O2 under the same conditions exhibit significant rate enhancement (krel, 

Table 2; Fig. 4.3), e.g., 312-fold relative to auto-oxidation rate constant ko for 

dopamine oxidation by CuAβ1–40 with kcat = 0.0056 s–1 and kcat/K’ = 21 M–1 s–1.  The 

oxidation of dopamine is dependent on H2O2 and reaches a plateau at H2O2 > 15 mM 

with θ = 3.57 (Fig. 1, inset), which indicates that the ROS H2O2 can bind to CuAβ to 

afford a "metallo-ROS" in a cooperative manner.  Oxidation of catechol without the 

side chain by Cu-Aβ1–40 exhibits a similar kinetic pattern (Fig. 4.1; Table 2), 

confirming the cooperative nature of this oxidative catalysis.   

The results conclude that "metallo-ROS" is much more reactive than free ROS 

alone as far as H2O2 is concerned.  Once again, the shorter CuAβ1–16(20) fragments 

exhibit higher activity than CuAβ1–40 toward dopamine oxidation in the presence of  
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Figure 4.3.  H2O2 effect on oxidation of dopamine (a), (+/–)epinephrine (b), and (–

)norepinephrine (c) catalyzed by 3.15 µM CuAβ1-20 in the presence of H2O2 (from 

bottom, 0, 1.0, 2.0, 4.0, 8.0, 16.0, and 20.0 mM).  (d–f) Hanes plot analysis of 

catecholamine oxidation in the presence of H2O2 (from plots a–c).  The lines are the 

best fits to a bi-substrate mechanism (g–i) Secondary plots of the Hanes plots from 

d–f which reveal apparent and intrinsic dissociation constants K’ values, by plotting 

of the slope (•) and y-intercept (ο) from plots d–f as a function of 1/H2O2. 
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H2O2 (Table 1).  This observation once again suggests pathological significance of 

soluble Aβ fragments in AD.  Herein, CuAβ1-20 is able to significantly accelerate 

oxidation rates of catechol and catecholamine neurotransmitters by 1,350 to 2.24 × 

105 times in terms of kcat relative to ko (Table 2).  It is worth noting that kcat/K’ of 

1,690 M–1 s–1 for catechol oxidation by CuAβ1–16 approaches enzyme-like catalytic 

efficiency which is 5.3% of the activity of the catechol oxidase (32,000 M–1 s–1)  from 

gypsywort (Lycopus europaeus).36 

Since both H2O2 and the neurotransmitters can bind to the metal active-center, the 

data are analyzed with a two-substrate random-binding mechanism according to the 

Hanes equation (Fig. 4.3)37 to afford the apparent and intrinsic dissociation constants 

KS and Ki(S) (0.34 and 0.23 for catechol and 0.52 and 0.22 for dopamine, respectively).  

The ratios of KS/Ki(S) are greater than one, indicating that the neurotransmitters and 

H2O2 are affecting the binding of each other in this bi-substrate reaction 

mechanism.37,38    

Influence of micelles: Aβ1–40 and fragments are found in various cellular 

environments, including soluble forms in the cytosol and insoluble forms as 

membrane-bound plaques.  Herein, the detergent sodium dodecyl sulfate (SDS) is 

used to approximate the amphiphilic nature of cell membrane.  Structures of short Aβ 

fragments in the presence of SDS differ considerably from that in the absence of this 

micelle-forming surfactant.39  The activities of CuAβs in the presence of micelles may 

offer insight into the nature of the structure and activity of Aβ.  The rate constant kcat 

of CuAβ1–20 for the oxidation of dopamine is largely affected by the soluble form of 

SDS (4.5 times) and noticeably influenced (80%) by micelles with the critical micelle 

concentration (CMC) of SDS  



www.manaraa.com

 
 

164

Substrate kcat(10–3 s–1) K’ (mM)a kcat/ K’ 
(M–1s–1) 

krel
b kcat (10–3 s–1) 

sat. H2O2 
kcat/K’ (M–1s–

1)c 

sat. H2O2 

k’rel
d 

sat. H2O2 

Catechole 
(by Aβ1–16) 
(by Aβ1–40)f 

dopamine 
(by Aβ1–16) 
(by Aβ1–40)f 
(±) Epinephrine 
(–) Epinephrine 
(–) Norepi. 
(+) Norepi. 
(–) Dopa 
(+) Dopa 
Phenole 

(by Aβ1–16) 
(by Aβ1–40)f 

5-hydroxy-Trp  
serotonin 
(by Aβ1–16) 
(by Aβ1–40)f 

154 
280 
0.87 
11.6 
28 

0.75 
3.1 
2.9 
2.7 
2.8 
1.1 
1.2 
3.9 
6.4 

0.44 
6.4 
6.7 
26 

0.28 

0.35 
0.31 
0.19 
0.90 
0.31 
0.27 
0.60 
0.61 
0.52 
0.57 
0.34 
0.32 
1.23 
0.59 
1.25 
0.45 
1.47 
0.63 
0.33 

440 
900 
4.6 
13 
90 
2.8 
5.2 
4.8 
5.2 
4.9 
3.2 
3.8 
3.2 
11 

0.35 
14 
4.5 
41 

0.84 

3.25 × 105 
5.92 × 105 

1,850 
1,320 
3,180 

85 
2,420 
2,270 
1,330 
1,380 
333 
364 

8.67 × 104 
1.41 × 105 
9.54 × 103 
8.25 × 103 
7.75 × 103 
3.03 × 104 

324 

531 
1,150 
11.2 
99 
230 
5.61 
24 
22 
17 
18 

9.11 
9.03 
213 
340 
1.43 
43.9 
30.4 
250 
7.8 

1,510 
1,690 

28 
190 
340 
11 
34 
54 
32 
39 
27 
28 
170 
58 

1.14 
97.5 
67.6 
380 
24.4 

2.24× 105 
7.64 ×105 
1.96 × 104 

5,530 
1.27 × 104 

312 
9,420 
8,630 
6,940 
7,350 
1,360 
1,350 

4.16 × 106 
6.64 × 106 
2.79 × 104 
5.64× 104 
3.28 × 104 
2.69 × 105 
8.41 × 103 

 

 
Table 3.  Kinetic parameters for the oxidation of catecholamines to o-quinone by Aβ1–20, except those indicated. Intrinsic dissociation 

constant for the CuAβ-S complex. b The background self-oxidation rate constant ko is calculated based on the MBTH detection of o-

quinone formation in the absence of CuAβ at 25 °C in 100.0 mM HEPES pH 7.0 under aerobic conditions. 
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around 8 mM (Fig. 4.4);xl whereas that of CuAβ1–40 is slightly influenced by soluble 

SDS (2-fold) and greatly affected by micellar SDS (8-fold). 

Under our experimental conditions, SDS micelles do not influence the self-

oxidation rates of neurotransmitters.  The shortest CuAβ1–16 is only slightly affected 

(85% enhancement) in the presence of saturating amount of SDS and shows only 14% 

enhancement in correspondence with CMC.  The results indicate that the plaque-

forming CuAβ1-40 is expected to exhibit more significant oxidation chemistry when it 

is “solubilized” and incorporated into a hydrophobic environment; whereas the 

soluble CuAβ1–16 and CuAβ1–20 are already more powerful oxidation agents than 

CuAβ1–40 in aqueous environments (Table 1).  The results seem to also corroborate 

the “opposing activities” proposal for neuroprotection via proteolysis and 

aggregation,xli wherein the highly active small Aβ1–16(20) fragments are supposed to be 

eliminated by the former process whereas the activity of Aβ1–40 is much decreased by 

the latter process by forming aggregates.  The local concentrations of metallo-Aβ 

plaques can reach mM range,4 which can cause significant oxidative damages of 

proximal areas on the brain.  Consequently, the devastating metallo-ROS chemistry 

due to CuAβ1–40 and fragments in the brain of AD patients can have a widespread 

effect in different cellular environments, particularly in hydrophobic membranes that 

significantly enhance the metal-centered oxidative activities as demonstrated herein. 

Influence by reducing agents: The NAD(P)+/NAD(P)H ratios vary according to 

changes in metabolism and is species/tissue-dependent,xlii  thus are expected to affect 

the redox property of CuAβ in vivo. Changes in the homeostatic levels in terms of 

NAD(P)+/NAD(P)H may reflect the neurochemical status under oxidative stress.xliv   

Metabolic changes have been  
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Figure 4.4.  Effect of SDS on the oxidative activity of CuAβ1-16 (●), CuAβ1-

20 (o), and CuAβ1-40 (▼) in 100.0 mM HEPES pH 7.0 and 25 °C.  The data 

show influence of the activity by both the monomeric and the micellar forms 

of SDS with CMC of 8 mM.   
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noted to be associated with several age-associated diseases, including 

neurodegenerative diseases.xliii  It has been previously reported that these ratios are 

managed according to spatial and temporal constraints in the brain under oxidative 

stress.xliv  The oxidation activity of CuAβ1-20 is lowered by NAD(P)H.  As the ratios 

of NAD(P)+/NAD(P)H decrease, the activity in terms of kcat toward dopamine 

oxidation decreases by 2.4 and 1.9 times, respectively (Fig. 4.5).  Based on the 

proposed mechanism for catechol oxidation by Cu-Aβ1–20,21 the inhibitory effect of 

NAD(P)H is due to shifting in equilibrium toward H2O2 generation under reducing 

conditions.21,xlii  The more pronounced inhibition caused by NADPH as compared to 

NADH might be attributed to the phosphate group in NADPH.  Indeed, phosphate has 

been observed to be a competitive inhibitor toward the oxidation of dopamine, 

showing Ki = 4.7 mM (Fig. 4.6).  The ratio of free NAD+/NADH has been under 

debate which nevertheless has recently been suggestedxlv to be around 600, consistent 

with the value based on potentiometric measurement.xlvi  The relatively smaller 

availability of free form of NADH suggests that this biological reducing agent may 

not significantly influence the metal-centered oxidative catalysis of CuAβ under 

physiological conditions. 

To reveal the mechanism of the full-length Aβ1–40, the slow substrate 4,5-

dichlorocatechol (DCC) was titrated into a solution of CuAβ1–40.  The observation of a 

charge transfer transition at 438 nm (Fig. 4.7) is indicative of DCC binding to the CuII 

center (with an affinity constant of 6.4 × 105 M–1, dotted trace; Fig. 4.6) analogous to 

its binding to the soluble CuAβ1–20.22  Cooperativity is apparent in DCC binding (solid  
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Figure 4.5. Influence of NAD(P)+ (o) and NAD+ (●) on the oxidative activity of 

CuAβ1–20 toward dopamine oxidation with a fixed total concentration of NAD(P)+ 

+ NAD(P)H = 10.0 mM. 
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Figure 4.6.  Phosphate inhibition toward catechol oxidation by CuAβ1–20 in 100 

mM HEPES at pH. 7.0.  Phosphate concentrations are 0, 10, 20, and 40 mM (from 

bottom). 
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trace; Fig. 4.7), probably due to the coagulation nature of Aβ1–40. The stoichiometry 

of DCC:CuAβ1–40 = 1:2 verifies the dinuclear nature of the catalysis. The activation  

profile during CuII titration to Aβ1–40 is sigmoidal with a Hill coefficient θ =2.68 (Fig. 

4.8) which further support a dinuclear catalysis. Cooperativity is not usually expected 

in mononuclear catalysis, wherein a linear correlation of the activity with CuII is 

expected until one equivalent is reached.   

The oxidation of catecholamine neurotransmitters by CuAβ1–20 and the 

stoichiometry for DCC binding are consistent with the action of dinuclear catechol 

oxidase.21  The mechanism of this enzyme thus serves as a working model for the 

metal-centered oxidation of catecholamines by CuAβ.  Under aerobic conditions, the 

catechol moiety binds to a di-CuII center (Fig. 4.9) and is oxidized via 2-electron 

transfer to afford di-CuI and o-quinone product (B).  Di-Cu+ then binds O2 to form the 

metallo-ROS µ-peroxo-Cu2 center (C and D) after 2-electron transfer from di-Cu2+ to 

O2, which may bind (E) and oxidize (F) another substrate.  In the presence of an 

electron donor such as NAD(P)H (H), the oxidation of neurotransmitters is inhibited.  

Herein, H2O2 is formed to certain extents which can produce other types of ROS and 

may exacerbate the oxidative destruction by going through the peroxide shunt (G) 

upon forming the highly reactive metallo-ROS µ-peroxo-di-CuII intermediate.  The 

metal-bound H2O2 as a metallo-ROS in equilibrium of three possible iso-electronic 

speciesxlvii (D) has been demonstrated herein to be a more potent oxidative agent than 

H2O2 alone to cause neurodegeneration. 

The full-length plaque-forming CuAβ1-40 also shows significant metal-centered 

oxidative activity toward the relatively more inert phenol (Fig. 4.10; Table 2),  



www.manaraa.com

 
 

171

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7. a) Optical titration of DCC into 0.05 mM CuAβ1–40.  Inset shows change 

of intensity at 438 nm upon DCC binding to a di-CuII center.  Both were in 100.0 mM 

HEPES at pH 7.0.   
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Figure 4.8. Activity titration of CuII into 2.5 micro-M Aβ1–40 under saturating 

conditions of catechol. 
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Figure 4.9. Mechanism for the oxidation of catecholamine neurotransmitters 

and the cause of neurodegeneration by CuAβ.  The metal-bound H2O2 as a 

metallo-ROS is shown in D. 
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showing kcat = 0.439 and 1.43 s–1 (with a small cooperativity θ = 1.6) and kcat/K’ = 

0.351 and 1.14 M–1 s–1, respectively, in the absence and presence of 50.0 mM H2O2.  

The activity reaches saturation at high H2O2 (Fig. 4.10), reflecting binding of H2O2 to 

the metal to afford metallo-ROS. Phenol hydroxylation and oxidation exhibits the 

same trend of reactivity with the shortest CuAβ1–16 showing the highest activity 

(Table 2).  Herein, oxidation of phenol is dramatically enhanced by 6.64 × 106 and 

1.41 × 105 times by CuAβ1–16 with and without 50.0 mM H2O2, respectively. 

Serotonin can be hydroxylated and oxidized by CuAβ1–(16,20,40) into its quinone 

form with significant rate enhancements ranging from 324 to 3.03 × 104 and 8.41 × 

103 to 2.69 × 105-fold, respectively, relative to ko in the absence and presence of a 

saturating amount of H2O2 (Fig. 4.11; Table 2).  As in the case of catecholamine 

oxidation, the oxidation of serotonin by CuAβ1–40 is slower than that by CuAβ1–(16,20).  

Moreover, the precursor of serotonin 5-hydroxy-Trp can also be effectively 

hydroxylated and oxidized by CuAβ1–20 (Table 2).  The apparent and intrinsic 

dissociation constants KS and Ki(S) for phenol are determined to be 1.23 and 0.54 mM, 

respectively, from the Hanes plots, indicating H2O2 binding to the metal center 

decreases the binding of serotonin.  The reactions may follow the tyrosinase 

mechanismxlviii for the hydroxylation and oxidation of phenol, serotonin, and 5-

hydroxy-Trp.  However, CuII-Aβ is still highly active without H2O2 in hydroxylation 

reaction, whereas the di-CuII met-form of tyrosinase is not. The large oxidation 

enhancements of the two indoleamines by CuAβ suggest that their oxidation possibly 

taking place in the brain of AD patients may alter serotonin-mediated physiological 

functions, including sleep disorder, mood change, and anxiety often associated with 

AD patients.xlix  
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Figure 4.10.  (a) Aerobic oxidation of serotonin by 1.47 µM CuAβ1-40 in 100.0 mM 

HEPES at pH 7.0 and 25 °C.  Dashed traces are fittings to a pre-equilibrium kinetics 

while the solid traces are fittings to the Hill equation, showing the presence of 

cooperativity.  (b) Oxidation of serotonin by CuAβ1–40 in the presence of H2O2 as in 

(a).   
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Figure 4.11.  (a) Saturation profile of phenol oxidation by 1.47 µM CuAβ1-40 in 100.0 mM 

HEPES at pH 7.0 and 25°C.  Dashed line is the fitting to a pre-equilibrium kinetics while 

the solid line is the fitting to the Hill equation (kcat = 4.39 × 10–4, Km = 1.25 mM, kcat/ Km = 

0.35 M–1s–1, θ = 1.60).  (b) The effect of H2O2 on the first order rate constant kcat.  

Cooperativity is not very apparent in this case, showing θ = 1.33. 



www.manaraa.com

 
 

177

 

 

Cell culture experiments reveal that catecholamines can exacerbate the oxidative 

stress caused by Aβ.l  However, the metal-centered oxidative catalysis has been 

overlooked.20  Oxidation of catecholamines is known to generate neurotoxic quinone 

productsli that are involved in protein modification (e.g., covalent modification of 

dopamine transporterlii) and polymerizing tau protein into fibrils.liii  Age-related 

deficits of both dopamine and norepinephrine have been implicated in the 

vulnerability of noradrenergic neurons in the hippocampus,liv which suffers significant 

damage in AD.  Moreover, loss of noradrenergic neurons is linked to degradation of 

the locus ceruleus, which is rich in dopaminergic neurons that shows severe lesion in 

AD.lv  Hence, a possible mechanism for reduction in neurotransmitter-regulated 

alertness response, delay-period activity, sleep cycle, mood stabilization, short-term 

memory, cognition, attention and problem solving capability, satisfaction feeling, and 

coordination of physical movement experienced by AD patients31–34 may be due to 

excessive oxidation of neurotransmitters, hinting at a possible neuropathological role 

of metallo-ROS associated with CuAβ. 

 

IV. CONCLUDING REMARKS 

 

 In conclusion, the full-length plaque-forming CuAβ1–40 found in the brain of AD 

patients has been demonstrated to exhibit significant activities toward the oxidation of 

neurotransmitters with or without H2O2 which can be further enhanced by interacting 

with membranes.  The results suggest that imbalance of neurotransmitter metabolism 
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can be created near Aβ1–40 plaques in AD.  Moreover, the smaller fragments CuAβ1–

(16,20) show higher activities than CuAβ1–40 toward the oxidation of neurotransmitters.  

This observation suggests that small fragments of Aβ, due to their soluble nature, can 

significantly disturb neurotransmission in a more systematic manner in the brain of 

AD patients and thus may play an important role in neuropathology of this 

devastating disease. 
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CHAPTER V. METHIONINE-35 IS NOT A REDUCING AGENT FOR THE 

METAL-CENTERED OXIDATION CHEMISTRY OF Cu2+-β-AMYLOID– 

KINETIC AND EPR STUDIES 

 

 

I. INTRODUCTION 

 

Oxidative stress1 has been a key topic of research concerning cancer, aging, heart 

diseases, arthritis, diabetes, and neurodegenerative disorders such as Parkinson’s and 

Alzheimer’s diseases2 (AD).  Mechanisms proposed for the neurodegeneration in AD 

brains generally focus on the amyloid-β peptide (Aβ),2 a proteolytic product of 40–42 

amino acids of the ubiquitously distributed amyloid precursor protein (APP), and its 

interaction with redox-active metal ions.  The recent “Aβ cascade hypothesis” suggested 

that Aβ aggregates trigger a complex pathological cascade which leads to 

neurodegeneration in AD,3 including generation of H2O2,4,5 free-radical induced 

oxidation,6–8 and the involvement of Met35 as a reducing agent9 in the redox chemistry of 

metallo-Aβ.  A central focus of the neuropathology of AD thus has been the effects of 
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redox-active transition metal ions and reactive oxygen species (ROS), such as 

superoxide, hydroxyl free radical, and H2O2.2  Although physiological processes 

responsible for dealing with ROS can be up-regulated to tackle variations in oxidative 

stress,10,11 long-term negative effects of such oxidative chemical imbalance such as that 

taking place in the brains of AD patients can be expected.  Some AD treatment strategies 

have targeted the metal center in Aβ to prevent peptide aggregation and ROS 

generation.12–14  However, comparatively little effort has been focused on the metal-

centered chemistry associated with the bound metal ions, such as the detailed 

coordination chemistry and the reactivity of the metal–bound ROS in CuAβ.  

Transgenic mouse models with human Aβ show similar effects as AD patients, 

including Aβ aggregation and loss of memory.15,16  Rodent Aβ has been shown to exhibit 

redox activity in vitro that was attributed to ROS generation via Met35,17 even though the 

metal-binding domain was mutated in rodent Aβ (i.e., His13→Arg).  Since Aβ activity 

and aggregation in AD brains is sequence-specific and metal-dependent,2 it is a priority to 

establish the targets of redox activity that can contribute to the physiological and 

cognitive effects of AD.  I have shown in Chapters II-IV that the Cu2+ complexes of Aβ 

and its soluble fragments (Aβ1-16 and Aβ1-20) showed considerable activities toward the 

oxidation of phenol, polyphenol, catechol, and neurotransmitters to form o-quinones 

which challenges the redox role of Met35 that is not present in the fragments.18,19,20  The 

capability of Aβ to bind copper21 with subsequent H2O2 generation under reduction 

conditions5 and catechol oxidation18–20 hint at the possible formation of a reactive µ-

η2:η2-peroxo-di-Cu2+ species (or its isoelectronic counterparts, oxy-di-Cu+, µ-η1:η1-
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peroxo-di-Cu2+, and bis-µ-oxo-di-Cu3+)22 which is the active species in action of the type-

3 dinuclear copper oxidases23 such as catechol oxidase.   

In this chapter I present kinetic and spectroscopic investigations of the oxidation 

chemistry of CuAβ1-20 and the influence of methionine and reducing agents on the 

oxidation chemistry.  The results support metal-centered oxidative stress and shed light 

on the mechanistic role of Met35 and reducing agents in the redox chemistry of CuAβ.   

 

II. EXPERIMENTAL  

 

The 1-20 fragment of Aβ was synthesized by the use of the Fmoc chemistry at the 

Peptide Center of the University of South Florida, and the identity of the peptide 

confirmed with a Bruker MALDI-TOF mass spectrometer.  Dopamine, ascorbic acid, and 

glutathione (GSH) were obtained from Sigma-Aldrich (St. Louis, MO), 3-methyl-2-

benzothiazolinone hydrazone hydrochloride monohydrate (MBTH) from Acros 

(Fairlawn, NJ), and H2O2, EDTA, L-methionine, and Cu(NO3)2 from Fisher Scientific 

(Swanee, GA).  All plastic ware and glassware were demetallized with EDTA and 

extensively rinsed with 18.0-MΩ deionized water. 

The catechol oxidase assay toward dopamine was performed as previously 

reported.20,24  Same equivalent of a substrate dopamine and the o-quinone indicator 

MBTH were mixed in 100 mM HEPES at pH 7.00 in a final volume of 1.0 mL.  The 

MBTH-adduct of o-quinone was monitored at 505 nm (ε = 27,200 M–1 cm–1) and 25 °C 

for 5–10 minutes with a Varian CARY50 Bio-UV-Vis spectrophotometer equipped with 
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a CARY PCB-150 Water Peltier temperature regulation system, and the rates determined 

by the change in absorbance over time.  Rates were fitted to appropriate rate laws and 

rate constants determined with non-linear regression (SigmaPlot 8.0), such as the 

enzymatic Michaelis-Menten-like kinetics.25  The effects by H2O2, ascorbate, GSH, and 

L-Met were determined similarly in the presence of different amounts of the 

corresponding reagent and the inhibition/dissociation constants determined accordingly.  

Binding of L-Met to CuAβ1–20 was performed by direct titration of Met into CuAβ1-20 in 

100 mM HEPES at pH 7.0 and monitored with the CARY50 spectrophotometer.   

Electron paramagnetic resonance (EPR) experiments were performed on a Bruker 

Elexsys E580 cw/pulsed X-band spectrometer at the University of Florida with professor 

Alexander Angerhofer.  For a typical cw EPR spectrum, the field was set wide enough to 

reveal a possible low-field transition for magnetically coupled systems with a microwave 

frequency of 9.4 GHz, field modulation typically around 2 G, and time constant of 40-80 

ms at ~5–6 K.  The g and A tensors were obtained with numerical fittings using the 

“easyspin” toolbox for Matlab.26 Electron relaxation times were measured with the 

standard two-pulse Hahn’s spin-echo method or the inversion-recovery methods, wherein 

the signal intensity as a function of time is fitted to simple or double exponential decay to 

obtain the relaxation time.  ESEEM (electron spin echo envelope modulation) spectra 

were recorded with the usual π/2-τ- π/2-T- π/2 pulse sequence with a π/2 pulse of 20 ns in 

order to study 14N and 2H nuclei in the ligand sphere. A typical ESEEM trace consisted of 

1024 points taken at time intervals of 8 ns. The transient was first base-line corrected by 

subtracting the ordinary T1 exponential decay function and any remaining constant 
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baseline offset, then zero-appended to 2048 points. A Hamming window function was 

then applied to the time-domain spin-echo envelope, followed by Fourier transformation 

to afford the frequency-domain spectrum.   

An ESEEM spectrum can reveal those nuclei having super-hyperfine coupling with 

the Cu2+ center, including coordinated His side chains and water, which can thus serve as 

a very useful tool for the investigation of the Cu2+ center in CuAβ.  The theoretical 

background27 of ESEEM is summarized herein.  In the case of coordinated His side 

chains, the super-hyperfine coupling arises from the electron-nuclear interactions and the 

nuclear quadrupole interactions (NQI) of the remote non-coordinated nitrogen (14N, I = 1) 

on the imidazole ring of coordinated His side chains.  At X-band, three zero-field nuclear 

quadrupole resonance lines ν± and νo are observed which can be determined from the 

NQI lines in the ESEEM spectrum (Eq. 1 and 2), wherein e2qQ is the quadrupole 

coupling constant and η the asymmetry parameter (η = 0 for a complete axial symmetry 

and 1 for a pure rhombic symmetry).   

 

ν± = 1/4(e2qQ)(3 ± η) (1) 

νo = 1/2(e2qQ)η             (2) 

 

The e2qQ and η values can thus be obtained from the NQI lines in the ESEEM spectra 

since (ν+ – νo/2)/3 = 1/4(e2qQ).  In the case of coordinated water, the super-hyperfine 

coupling arises from the electron-nuclear interactions and the NQI of the coordinated 

water molecules upon deuteration. The deuterium Zeeman interaction at X-band is much 
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larger than the isotropic component of the electron-nuclear coupling.  Thus, the 

deuterium peak in the ESEEM spectrum is found at the deuterium Zeeman frequency and 

split slightly by the electron-nuclear coupling. 

 

III. RESULTS  

  

Dopamine is oxidized by CuAβ1–20 in the absence of H2O2 with rate constant of kcat = 

0.0104 s–1 and Km = 0.89 mM (trace •, Fig. 5.1), consistent with the observations 

discussed in Chapter IV.20  Addition of L-Met to the reaction solution significantly 

increases the activity (Fig. 5.2).  The reaction in the presence of saturating amount of Met 

seems to induce slight cooperativity which can be fitted to the Hill equation with a Hill’s 

coefficient θ = 2.3 (Solid trace Figure 5.1).  The activity reaches a plateau at high [Met] 

(Fig. 5.1), indicating direct Met binding to the active center of CuAβ.  Fitting of the kcat 

values as a function of [Met] to a simple equilibrium of [CuAβ + Met  Met-CuAβ] 

gives an affinity constant of 1,900 M (Kd = 0.53 mM).  Met follows a non-essential 

activation pattern toward dopamine oxidation by CuAβ1–20 as shown in the Lineweaver-

Burk plot (Fig. 5.1), i.e., both CuAβ-substrate and Met-CuAβ-substrate complexes are 

active.  From the data, the dissociation constant for the activation KA can be obtained to 

be 0.087 mM, and the dissociation constant for the ternary [CuAβ1-20-Met-dopamine] 

complex KTS is 0.125 mM. In the presence of H2O2, the activity is further  

 

 



www.manaraa.com

 7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[L-Dopamine] mM
0.0 2.0 4.0

ra
te

 m
M

/s
 

0.0

1.0e-4

2.0e-4

 
 
Figure 5.1. Saturation kinetics curves of dopamine oxidation by 

CuAβ fitted with Michaelis-Menten kinetics (dotted traces) and 

with Hill equation (solid traces).   
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Figure 5.2. Effect of L-Met on the the first order rate 

constant toward dopamine oxidation. 
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Figure 5.3.  Lineweaver-Burk plot of showing the non-essential 

activation pattern for L-Met toward dopamine oxidation by 

CuAβ 
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enhanced.  Herein, both Met and H2O2 can activate dopamine oxidation which are not 

exclusive of each other and show a combined effect, i.e., the kcat value of 0.180 s–1 in the 

presence of saturating amount of Met and H2O2 (Fig. 5.4) is a combination of those in the 

saturating amount of Met (0.088 s–1 for Met activation) and H2O2 (0.099 s–1 for H2O2 

activation), indicating their independent activation mechanisms.  As opposed to Met, the 

reducing agents ascorbic acid and GSH act as inhibitors toward dopamine oxidation by 

CuAβ (Fig. 5.5), with the former being a competitive inhibitor (Ki = 66 µM) while GSH a 

non-competitive inhibitor (Ki = 53 µM).  

The electronic spectrum of CuAβ exhibits an intense charge-transfer transition at 316 

nm upon addition of Met (Fig. 5.6), indicative of direct Met binding to the Cu2+ center.  

Such charge-transfer transition is not observed in CuAβ1–40, suggesting that Met35 does 

not interact with the Cu2+ center.  The d-d transition of CuAβ1-20 at 600 nm is not 

significantly affected in the presence of saturating amounts of Met (Fig. 5.6; inset).  The 

change in the intensity of the charge transfer transition as a function of [Met] can be fitted 

to the 1:1 binding pattern of [CuAβ + Met  Met-CuAβ] to yield a dissociation 

constant Kd = 0.25 mM.  This value is comparable to that obtained from the activity 

profile discussed above, indicating that direct Met binding to the Cu2+ center affords the 

enhancement of CuAβ activity.   

The coordination of CuAβ and its binding with Met have been investigated with EPR 

spectroscopy.  The EPR spectrum of CuAβ1–20 (Figure 5.7) can be attributed to a typical 

tetragonally distorted Cu2+ center, i.e., an elongation along the z axis due to the Jahn-  
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 Figure 5.4.  Rate of dopamine oxidation by CuAβ1-20 in the 

presence of saturating amounts of L-Met and H2O2. 
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Figure 5.5.  (A) Glutathione (10.0 µM, 20.0 µM, and 40.0 µM from bottom) 

inhibition and (B) ascorbic acid inhibition (0.0, 0.12, 0.55, and 0.95 mM from 

bottom) toward dopamine oxidation by Cu-Aβ1–20 in 100.0 mM HEPES pH 7.0. 
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Figure 5.6. Optical titration of L-methionine to 0.2 mM CuAβ.  The insets show 

the low energy d-d transition and the saturation curve fitted to 1:1 ligand:metal 

stoichiometry.   
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Teller effect, which can be slightly better fitted to a rhombic than an axial magnetic gz = 

2.266, gx = 2.057, and gy = 2.080 and Az = 547, Ax = 30.6, and Ay = 51.1 MHz (Fig. 5.7) 

or g// = 2.268, g⊥ = 2.064, A// = 547, and A⊥ = 51.1 MHz.  These values are consistent 

with those reported for several Cu2+ complexes of Aβ and fragments,28 i.e., g// = 2.265–

2.269, g⊥ = 2.059–2.062, and A// = 465–577 MHz (from 166-206 G).  Upon addition of 

Met, the EPR spectrum changes only slightly to gz = 2.257, gx = 2.055, and gy = 2.072 

and Az = 564.9, Ax = 35.8, and Ay = 46.0 MHz (Fig. 4A) or g// = 2.257, g⊥ = 2.059, A// = 

565, and A⊥ = 35.8 MHz, as opposed to the dramatic change in the electronic spectrum. 

The Cu2+ center in CuAβ1–20 and its interaction with Met are further investigated with 

pulsed EPR.  The X-band ESEEM spectrum of CuAβ1–20 (Fig. 5.8) reveal three 14N NQI 

lines at νo = 0.33, ν– = 1.11 (shoulder), and ν+ = 1.45 MHz (Eqs. 1 and 2), the double-

quantum transitions at ~4 Mz, and the combination lines at 2.33, 2.95, and 3.45 MHz.  

From which, e2qQ is obtained to be 1.71 MHz, a value typical of a coordinated His,27 and 

η calculated to be 0.39 (Eqs. 1 and 2).  The ν– line (a shoulder) can be better determined 

once the values of e2qQ and η are determined from νo and ν+.  At least one coordinated 

water is also revealed which attributes to the deuterium modulation at 2.29 MHz when 

the spectrum was acquired from a sample in D2O buffer excited at 3391 G (dashed trace, 

Fig. 5.8), consistent with 2H resonance of 2.21 MHz at this field.  This small discrepancy 

may be attributed to the presence of a small super-hyperfine coupling.  An ESEEM 

spectrum for Met-bound CuAβ in D2O buffer was acquired under the same conditions 

(dotted trace, Fig. 5.8) to investigate the status of the coordinated water upon  
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Figure 5.7. X-band EPR spectra of CuAβ1-20 in the presence 

and absence of L-Met and simulated spectra with rhombic g 

tensors (dashed traces).   
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Figure 5.8. ESEEM spectra of 1.0 mM CuAβ1–20 in 100.0 mM HEPES buffer in 

H2O (solid trace) and in D2O (dashed trace) at pH(D) 7.0 and after addition of  8.0 

equivalents Met (dash-dot trace). 
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Met binding.  The 14N NQI lines change only slightly upon Met binding, found at νo = 

0.15, ν– = 1.22 (shoulder), and ν+ = 1.37 MHz which afford e2qQ = 1.73 MHz and a 

small η = 0.17.  Upon Met binding, the deuterium line is observed at 2.19 MHz when 

excited at 3351 G, right at the 2H resonance frequency at this field which reflects a 

negligible super-hyperfine coupling. 

 

IV. DISCUSSION 

 

The oxidation of catechol and phenol and their derivatives by CuAβ in the presence 

and absence of H2O2 was demonstrated to be consistent with the mechanism of type-3 

copper oxidases such as di-Cu catechol oxidase (Fig. 5.9).19  Therein, the catechol-

containing substrate like dopamine binds to a di-Cu2+ active center (step i) under aerobic 

conditions and is oxidized via 2-electron transfer to afford a di-Cu+ active center (C) and 

o-quinone product (step ii).  The reduced di-Cu+ can bind O2 (step iii) to form a µ-

peroxo-Cu2+
2 center (D) as demonstrated in both enzyme and chemical model systems, 

which may bind a substrate and followed by oxidation of the substrate (steps iv and v).  

The presence of a reducing agent such as ascorbic acid (or Met35 as previously 

suggested9) can thus facilitate the aerobic pathway to yield the di-Cu+ active center (C) 

ready for O2 binding.  In the meantime, a reducing agent can also result in H2O2 

production through the reduction of the µ-peroxo-Cu2+
2 center (step vi).  An alternative 

“short-cut” route, also known as the “peroxide shunt” pathway in heme-containing 

peroxidase,29 for the oxidation to take place is to form the µ-peroxo-Cu2+
2 intermediate  
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   Figure 5.9.  Proposed mechanism for the catechol oxidase-like activity of CuAβ 

toward the oxidation of dopamine.  X indicates an endogenous ligand or a bound Met.  
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by direct binding of H2O2 to the di-Cu2+ center (step vii), followed by substrate binding 

(step iv) to form the µ-peroxo-Cu2+
2-substrate ternary complex (E) which then undergoes 

oxidation.  The ternary complex E can also be formed upon H2O2 binding to the 

substrate-bound intermediate (B; step viii), representing a random bi-substrate 

mechanism.   

Met35 in Aβ has been suggested to be a reducing agent9 responsible for the initiation 

of the redox cycling of the Cu2+ center in CuAβ and leads to H2O2 production (i.e., step 

vi).5  The oxidation of the thioether moiety of Met to its sulfoxide form in Aβ has been 

implicated in aggregation, lipid peroxidation, and redox chemistry in association with the 

metal center.9  The activity profile of [Met] (Fig. 5.1) and the optical spectrum (Fig. 5.6) 

indicate direct Met binding to CuAβ, rather than outer-sphere interaction, which 

potentially can reduce the Cu2+ center as proposed previously.  Herein, the amount of di-

Cu+ (C) increases which in turn forms a larger amount of the µ-peroxo-Cu2+
2 center upon 

O2 binding (D; step iii), but fewer amount of di-Cu2+ (A) would be present for substrate 

binding as it is reduced by Met.  However, once CuAβ (A) is reduced, it cannot follow 

the peroxide shunt pathway anymore.  The observation that H2O2 can still significantly 

enhance the activity in the presence of a saturating amount of Met (Fig. 5.2) suggests the 

Cu2+ center is not significantly reduced by Met, which is demonstrated by the detection 

of the S = 1/2 EPR features (Fig. 5.7).  Moreover, the difference in electrode potentials 

between Cu2+-Aβ and Met is 0.71 V,30 which gives a dramatic 68.5 kJ Gibbs free energy 

that is equivalent to a negligibly small equilibrium constant of 9.8 × 10–13 for one-

electron reduction of Cu2+-Aβ by Met at 298 K. 
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The non-exclusive nature of Met and H2O2 binding and their additive activations 

indicate that there are two pathways for the oxidation of dopamine in the presence of Met 

and H2O2, presumably the pathways i–v and vii–iv–v with a bound Met (the “X” ligand in  

Fig. 5.9), wherein the enhancement of the activity with Met alone is supposed to be due 

to a non-redox mechanism that fine-tunes the reduction potential of the Cu2+ to favor the  

oxidative catalysis.  The sigmoidal activity profiles for dopamine oxidation in the 

presence of Met (Fig. 5.1) and from the concerted action of both H2O2 and Met (Fig. 5.4) 

reflect possible presence of cooperativity, such as the formation of the dinuclear active 

center D.  Despite the lack of a Met and any redox-active amino acid, the fragments 

CuAβ1–16 and CuAβ1-20 exhibit significant metal-centered oxidative activity18–20 which 

indicates the redox role of Met35 might have been overstretched.   

The oxidation state of the Cu center in CuAβ1–20 upon Met binding can be concluded 

from the electronic and EPR spectra, wherein the remaining d-d transition at 600-nm 

(Fig. 5.6) and EPR features (Fig. 5.7) indicate that Cu2+ is not reduced by Met as opposed 

to previous suggestions for the reductive role of Met35 in CuAβ1–40.9  Moreover, the 

charge transfer transition is consistent with a thio-to-Cu2+ charge-transfer transition 

observed in Cu2+-methionine complexes.31  The well resolved EPR spectral features at 

g~2 (Fig. 5.7) upon Met binding confirm the d9 electron configuration of the Cu2+ center 

with S = 1/2.  The lack of ∆MS = ±2 transition (i.e., between the MS = –1 and +1 levels in 

an antiferromagnetically coupled di-Cu2+ center) in the EPR spectrum at low field 

indicates magnetic coupling between the Cu2+ centers may not exist.  Thus, the 

previously proposed His-bridged dinuclear Cu,Zn-superoxide dismutase center for 
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CuAβ1–28
32 is not present in the case herein.  The small change in the EPR spectrum upon 

Met binding indicates the charge transfer transition must be due to the binding of the 

thioether of Met through the non-magnetic dz2 orbital at an axial position of CuAβ1–20.   

Otherwise, more significant changes in the g and A tensors would be observed as 

reported for the binding of thio-groups to Type-2 Cu proteins.33   

The ESEEM spectrum of CuAβ1–20 (Fig. 5.8) confirms the binding of Cu2+ to Aβ 

through His side chains via the magnetic dx2–y2 orbital in equatorial positions which gives 

rise to the quadrupole coupling with the remote non-coordinated 14N on the coordinated  

His imidazole ring.  There are at least two coordinated His side as reflected by the 

combination lines since a single coordinated His does not give rise to these lines.33g,34  

The small η values indicate that the Cu2+ center is only slight rhombic, which has already 

been observed in the CW EPR spectra (Fig. 5.7).  The detection of a deuterium line at 

2.29 MHz suggests the presence of coordinated water (as D2O), presumably in an 

equatorial position via the magnetic dx2–y2 orbital.27  This signal is not much affected upon 

Met binding, once again suggesting Met binding to an axial position.  It is interesting to 

note that the double-frequency peak at 4.6 MHz vanishes upon Met binding.  This 

indicates that at least one of the weakly coupled deuterium atoms in the vicinity of the 

Cu2+ is replaced by the Met ligand. 

Since the binding of Met to CuAβ does not reduce the Cu2+ center, the enhancement 

in activity must be attributed to a change in the reduction potential of the Cu2+ center.  

The axially coordinated Met ligand in blue copper proteins has been suggested to play a 

role in controlling the reduction potential of the protein since mutation of this Met results 
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in a significant change in the potential.35  Based on the results herein, I propose the 

binding of methionine to Cu2+ in CuAβ may modulate the Cu2+/Cu+ potential to favor the 

redox catalysis, yet is not necessarily involved directly in the redox chemistry as a 

reducing agent as previously proposed.9   The oxidation of Met35 previously observed 

may follow the metal-centered mechanism as a catechol or phenol substrate via the 

reactive di-Cu2+-peroxo intermediate to result in oxygenation reaction, ie., the 

coordinated Met “X” serves as a substrate via step iv and v in the mechanism without the 

catechol substrate (Fig. 5.9).   

The catalytic pathway of CuAβ is altered under reduction conditions (Fig. 5.9), 

wherein the reaction is locked into a H2O2-producing cycle (iii and vi).  The competitive 

inhibition of ascorbate toward the oxidation of dopamine by CuAβ (Fig. 5.5A) may be 

because of possible chelation and reduction of the Cu2+ center by ascorbate.  GSH may 

bind to and reduce the Cu2+ center as a monodentate ligand which does not prevent 

substrate from binding to the Cu2+ center to form the inactive inhibitor-CuAβ-substrate 

complex, thus exhibiting non-competitive pattern (Fig. 5.5B). The inhibitory effect of the 

reducing agents toward metal-centered catalysis is consistent with the proposed 

mechanism wherein H2O2 is generated (step vi), also reported previously.5  Thus, the 

ability of CuAβ to oxidize biologically relevant molecules such as dopamine is highly 

dependent on the redox state of its environment.  Although reducing agents can 

potentially inhibit the oxidation of neurotransmitters by CuAβ, the production of H2O2 

may still exacerbate the situation of oxidative stress.  
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Metabolic malfunctions of catecholamines neurotransmitters have been suggested to 

be related to the neuropathology of AD.36  Of these neurotransmitters, dopamine has been 

directly linked to the neurodegenerative Parkinson’s disease37 and has been proposed to 

be associated with adult neurogenesis in the subventricular zone.38  I discuss in chapter 

IV that CuAβ can catalyze oxidation of catecholamine neurotransmitters such as 

dopamine20 to generate neurotoxic quinone products.39  Dopamine quinone can result in 

polymerization of tau protein into fibrils40 and covalent modification of dopamine 

transporter which directly affects dopamine uptake.41  A possible mechanism for 

reduction in the delay-period activity and short-term memory, lack of attention, and 

change in mood and motivation experienced by AD patients may probably be partially 

due to long-term oxidation of dopamine by CuAβ.  Hence, the acceleration of dopamine 

oxidation via metal-centered mechanism that can be modulated by small molecules such 

as reducing agents, H2O2, and Met may well hint at the significant role of CuAβ in 

oxidative stress in the brain of AD patients. 

 

V. CONCLUDING REMARKS 

 

  Taken together, the results herein present more structural information about the 

metal center and further support for metal-oxygen/peroxo-centered redox chemistry of 

CuAβ and provide additional mechanism for the oxidative stress in the brain of AD 

patients.  The role of Met35 has been redefined and the dual mechanistic character of 

reducing agents (i.e., inhibition and H2O2 generation) in the redox cycle of CuAβ is 
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clearly defined.  The overall picture of AD neuropathology is likely to be composed of 

the pieces of information uncovered thus far, including generation of ROS, metal-

dependent aggregation of Aβ, and the largely overlooked metal-centered degradation of 

biomolecules.  Treatment and prevention strategies hence must address all of these 

pathways, including inhibitions toward H2O2 production and oxidative damage of 

neurotransmitters and other biomolecules by the di-copper-peroxo active center. 
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CHAPTER VI. THE ASTACIN FAMILY OF ENDOPEPTIDASES AND 

EMBRYOGENESIS 

 

 

I. INRODUCTION  

 

The astacin family of zinc-dependent endopeptidases is a class of enzymes 

ubiquitously distributed across all phyla and part of the superfamily of 

metzincins.1  Approximately thirty members of the astacin family have been 

characterized at the protein level, including meprins, bone morphogenetic protein-

1 (BMP-1), and tolloid while several others have been identified through gene 

sequencing, including a large number in Caenorhabditis. elegans.2  The signature 

active site sequence for this family of enzymes is HEXXHGXXHEXXRXDR 

(Figure 6.1), where one Zn2+ atom coordinates to three histidines, a tyrosine, and 

a water molecule (Figure 6.2).3 Most members share common expression features 

such as the pre- and pro-enzyme sequences immediately located NH2-  
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Figure 6.1. Active site motif common to all astacins.2  
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Figure 6.2. Relaxed eye stereo view of the active-site structure 

of astacin with transition state analogue (PDB ID 1QJI). 
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terminal to the protease domain.  Several members contain one or two copies of 

epidermal growth factor EGF-like domains, and complement-like domains (Clr, Cls) near 

the COOH-terminus.  The shuffling of different domains in relation to the catalytic 

(protease or astacin) domain creates a variety of proteins with several different structures 

and functions.   

Embryo development is an area which remains unresolved in a number of more 

complex animals, including human embryogenesis and other representatives of sub-

phylum vertebrata due to the inherent complexities of deuterostome embryogenesis.  The 

challenge of resolving proteolytic signaling, that is likely responsible for modification of 

the extra cellular matrix (ECM), important in embryogenesis events, has partially been 

due to the lack of convenient model systems; a particular challenge is the isolation of 

ECM components in pure form in mice and human models.  Sea-urchins hence are a good 

model system for the study of morphogenesis due to the facility of isolation of pure and 

large amounts of protein components of the ECM.4  Another advantage of the sea-urchin 

model is that its genome has recently been sequenced which will facilitate the connection 

of upstream genetic events with its downstream message and proteolytic mechanisms.   

The presence of several astacin family enzymes in the development of the sea-urchin 

embryo (i.e. suBMP, SpAN, envelysin, and BP10) makes it a target to study similar 

proteolytic processes in higher organisms, especially those containing enzymatic 

processes analogous to tolloid and BMP-1, two enzymes proposed to be similar to BP10 

in structure.5,6  BP10 is an interesting enzymatic model system because it contains similar  
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Figure 6.3. Phylogeny of the astacin family catalytic domains.6 
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domains as other complex astacins such as tolloid and BMP-1, but is unique in domain 

arrangement which will be discussed further.5   

Originally characterized by the use of immunoblotting techniques and sequence 

analysis of the gene and m-RNA transcript,5, 6 BP10 has remained an unstudied member 

of this class of enzymes.  The focus of research has shifted to other members of the 

astacin class of enzymes (astacin itself being a crayfish digestive enzyme and hence only 

a novel prototype in catalytic mechanism) such as BMP-1 and tolloid due to their 

potential role in unraveling developmental information about human embryos (BMP-1) 

and the facility of handling a well established model system (tolloid from Drosophila).  

However, from an evolution standpoint, echinoderms (Echinodermata, the 

deuterostomes) are more closely related to humans than a fruitfly (Arthropoda, the 

ecdysozoans).7  BP10 hence is a good candidate as a functional model system of BMP-1 

and tolloid.  The transcription of the BP10 gene is transiently activated around the 16- to 

32-cell stage and the accumulation of BP10 m-RNA is limited to a short period at the 

blastula stage. Temporarily, the highest BP10 activity is detected approximately 1.5 hours 

after expression of the sea urchin hatching enzyme (envelysin) reaches a maximum.5  The 

BP10 transcripts are spatially expressed and only detected in a limited area of the blastula 

in the animal half of the embryo. The protein is first detected in early blastula stages. Its 

level reaches a peak in late cleavage, and declines abruptly before ingression of primary 

mesenchyme cells and remains constant in late development.5 The likely role of zymogen 

activator has been assigned to BP10, since the presence of an EGF domain is a highly 

conserved motif in proteolytic cascades or activation of precursors.8  However, it was 
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accurately described5 that blocking BP10 activity prior to hatching with the use of an 

antibody resulted in deformed embryos, whereas after hatching the embryos developed 

normally when treated with the same antibody, though basal levels of the enzyme can be 

detected after hatching. 

The morphogenetic studies conducted by Runnström and Horstadius determined 

that developmental processes occur across a gradient in where the ectodermal structures 

are controlled by the animal axis and the mesodermal (skeleton) is controlled by the 

vegetal pole.  This established model has been challenged by recent studies.9,10 Hence it 

becomes clear that sole analysis of gene structure and transcriptional levels is not enough 

to provide irrefutable evidence about animal development.  A multi-disciplinary approach 

is needed where the skills of a developmental biologist and the detailed information about 

structure/function of enzymes that a biochemist can provide are needed in order to fully 

understand such questions. 

 The BP10 protease is constructed of identical domains as BMP-1 and tolloid, and 

is described as a factor involved in cell differentiation in mid to late blastula.  Human 

BMP-1 has been characterized as a splice variant of the tolloid gene which is required for 

correct dorsal-ventral patterning of the Drosophila embryo.  In preliminary studies, BP10 

has not been shown to affect axis formation; hence the structure/function paradox does 

not hold true for BP10, BMP-1, and tolloid.  How do similar global mechanisms of 

development differ at the molecular level?  What are the mechanisms of evolution  
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Figure 6.4. Domain organization of proteins from the astacin/CUB/EGF subfamily.6 
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involved in animal development across the deuterostomes?  And finally, what are the 

regulatory networks during embryogenesis in humans, sea-urchins, and Drosophila?  

 BMP-1 has been assigned the role of a procollagen C-protease and its minimal 

domain structures necessary for activity and secretion have been identified.11  However 

BMP-1 is also able to cleave non-collagenous substrates such as dentin and laminin, 

hinting at a wide distribution of biological regulation factors that may be attributed to this 

enzyme.12-15 BP10 may serve a similar purpose in the sea urchin embryo.  The 

developmental regulation of BP10 expression shows that it is an important and necessary 

event in embryogenesis.5  Recent studies have also shown that another astacin family 

enzyme found in sea urchins, SpAN, is able to regulate BMP signaling.16  BP10 may be 

part of the signaling events which involve the enzymes suBMP, SpAN and BP10 itself, or 

perhaps play the role as a less discriminate activator of other important molecular events.  

Since BP10 is homologous to tolloid and BMP-1 (Figure 6.4), it is possible that 

the sea urchin enzyme is part of a regulatory set of interactions with polypeptides of the 

TGF-β family.  The involvement of BP10 in a process similar to that of BMP-1 is 

unlikely and most likely resembles tolloid in function.5  However, the high similarity in 

sequence and structural motifs makes BP10 an important comparison model in a lower 

species.  The mammalian BMP-1-related proteases are all capable of activating the TGF-

β protein growth differentiation factor (myostatin), by freeing it from a noncovalent latent 

complex with its cleaved prodomain.17 Similarly, BMP-1 and the splice variant mTLL-1 

but not tolloid or TLL-2 is able to free the TGF-β morphogens BMP-2 and BMP-4 from 

latent complexes with the extracellular antagonist chordin.18  Thus, BMP-1/tolloid-like 
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proteases may orchestrate formation of the ECM with signaling by various TGF-β-like 

proteins in morphogenetic events.   

BP10 is also a unique system that may contribute important information about the 

relationship of structural features such as EGF-Ca2+ binding domain and its CUB 

domains and the catalytic domain of these proteases (Figure 6.2).  It is unique to BP10 

that the EGF-Ca2+ domain is located between the catalytic domain and the proposed 

regulatory sequences of CUB1 and CUB2.  Often, these EGF-Ca2+ domains are located 

between CUB sequences.  CUB domains have been implicated both in activity and 

regulation in BMP-1.11  The kinetic properties of BP10 should then compare and contrast 

nicely with those of other BMP-1 and tolloid-like proteins.  Ca2+ may have a synergistic 

effect on the reaction catalyzed by BP10 due to its close proximity to the catalytic 

domain.   

From a protein evolution viewpoint, BP10 contains modules proposed to be 

involved in the domain shuffling (i.e evolution through exon shuffling).  Characterization 

of BP10 with simultaneous analysis of its gene structure will add further insight into this 

mechanism.  Moreover, once other sea urchin enzymes involved in embryogenesis, such 

as SPAN and suBMP are overexpressed and characterized, and their gene structures fully 

characterized, a better model of module domain shuffling protein evolution can be 

presented, since BP10, SPAN and suBMP are part of the same family of enzymes, acting 

in the same organism, and involved in some functional role during embryogenesis. 

In the case of astacin, BMP-1, tolloid, and BP10, the presence of a metal-

coordinated tyrosine is a rather unusual mechanistic motif due to the reduction of Lewis 
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acidity induced by the coordination of a negatively charged phenolate to the metal 

center.19, 20 This is not the case in astacin where the coordination of the Tyr-phenolate 

under physiological conditions does not affect its catalysis under neutral conditions.21,22  

A metallotriad mechanism has been proposed based on kinetic, optical, and EPR studies 

on the Cu2+ derivatives of astacin and serralysin.21, 22 Further analysis of the physical 

characteristics of astacin-type enzymes using spectroscopically-active metal substitutes in 

concert with classical enzyme kinetics (i.e. pH profiles, inhibition studies, etc.) analysis 

of splice variants of recombinant BP10 (whole enzyme and astacin domain truncation) 

will add further insight into the catalytic mechanism of these enzymes.  Concomitant with 

physical studies on the native system, active site mutants will allow for comparison both 

in kinetic parameters and the physical properties of BP10.  Previous site directed 

mutagenesis studies have been conducted; however, the choice of mutations have shed no 

actual mechanistic insight toward the catalytic mechanism of astacins, other than 

establishing that the conserved glutamate and tyrosine residues are catalytically 

important.23  The status of the coordinated tyrosine has been proposed to be an inhibitory 

process in the metal centered hydrolysis of peptide bonds.22  In this proposed metallotriad 

mechanism (Figure 6.5), the active-site Zn2+ coordinated by three His, tyrosine, and a 

water molecule can be activated via detachment of the phenolate with a concomitant  
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Figure 6.5. Proposed metallotriad mechanism in 

astacin and serralysin.22 
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general base deprotonation via a glutamate residue.  The metal bound OH– is able to 

attack and hydrolyze the scissile bond after Zn2+ creating electrostatic strain in the 

peptide bond by interaction with the carbonyl of the scissile bond. The confirmation of 

this mechanism can shed valuable insight into numerous enzymatic processes across all 

members of the astacin family, from the numerous astacin-like enzymes in C.elegans to 

the astacin/EGF/CUB members in higher organisms. 
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CHAPTER VII. OVEREXPRESSION AND CHARACTERIZATION OF 

BLASTULA PROTEASE 10 (BP10) FROM PARACENTROTUS LIVIDUS1 

 

 

I. INTRODUCTION 

 

Blastula Protease 10 (BP10) is a metalloenzyme assigned to the astacin family of 

Zn-dependent endopeptidases involved in sea urchin embryogenesis.  It contains 

conserved structural motifs consistent with astacin, tolloid, and bone morphogenetic 

protein 1 (BMP-1). Astacin, a gut enzyme, and serralysin, a bacterial enzyme, have been 

proposed to carry out hydrolysis via a “metallotriad” mechanism that involves a metal-

coordinated tyrosine. It has not been determined if the more structurally complex 

members of this family involved in eukaryotic development share this mechanism. The 

recombinant BP10 has been overexpressed in E.coli, its metalloenzyme nature confirmed, 

and its catalytic properties characterized through kinetic studies.  BP10 shows significant 

                                                 
1 This work has been published: G.F.Z. da Silva,  R.L. Reuille, L.-J. Ming, B.T.Livingston J. Biol. Chem. 
2006 281, 10737-10744. 
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hydrolysis toward gelatin both in its native Zn-containing form and copper derivative.  

The copper derivative of BP10 shows a remarkable 960 % rate-acceleration toward the 

hydrolysis of the synthetic substrate N-benzoyl-arginine-p-nitroanilide when compared to 

the Zn form. The enzyme also shows calcium-dependent activation.  These are the first 

thorough mechanistic studies reported on BP10 as a representative of the more 

structurally complex members of astacin-type enzymes in deuterostomes which can add 

supporting data to corroborate the metallotriad mechanism proposed for astacin.  

The astacin family of zinc-dependent endopeptidases is a class of enzymes 

ubiquitously distributed across all phyla and part of the superfamily of metzincins.1  

Approximately thirty members of the astacin family have been characterized at the 

protein level;2 including meprins, bone morphogenetic protein-1 (BMP-1), and tolloid, 

while several others have been identified through gene sequencing, including a large 

number in Caenorhabditis elegans.3  The signature of the primary sequence active site 

motif for this family of enzymes is HEXXHGFXHEXXRXDR, where one Zn2+ ion 

coordinates with three histidines, a tyrosine, and a water molecule.4, 5  Most members of 

this family share common domain structures such as the pre- and pro-enzyme sequences 

immediately located N-terminal to the protease domain.  Several members contain one or 

two copies of epidermal growth factor EGF-like domains, and complement-like domains 

(Clr, Cls) near the C-terminus.2  The shuffling of different domains in relation to the 

catalytic protease domain creates a variety of proteins with different structures and 

functions. 
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Originally isolated and characterized as a developmentally regulated gene in sea 

urchin embryos,6,7 BP10 protein has remained uncharacterized.  It shares sequence 

similarity with other members of the astacin family of enzymes.  The simplest member of 

the family, astacin from crayfish digestive fluid is a digestive enzyme and hence a novel 

prototype in catalytic mechanism important in development such as BMP-1 in vertebrates 

and tolloid in Drosophila.  Whereas BP10 is a good candidate as a functional model 

system of BMP-1 and tolloid.  The BP10 protease is constructed of identical domains as 

BMP-1 and tolloid, but has different arrangement of these domains. The transcription of 

the BP10 gene is transiently activated around the 16- to 32-cell stage and the 

accumulation of BP10 mRNA is limited to a short period at the blastula stage. 

Temporarily, the highest BP10 activity is detected approximately 1.5 hours after 

expression of the sea urchin hatching enzyme (envelysin) reaches a maximum.6  The 

BP10 transcripts are detected in a limited area of the blastula. The protein is first detected 

in early blastula stages, its level peaks in late cleavage, declines abruptly before 

ingression of primary mesenchyme cells, and remains invariable in late development.6  A 

likely role of zymogen activator has been suggested for BP10, since the presence of an 

EGF domain is a highly conserved motif in proteolytic cascades or activation of 

precursors.8  Blocking BP10 activity prior to hatching with the use of an antibody 

resulted in abnormal embryos.  

BP10 has a unique arrangement of structural features6, 7 such as EGF-Ca2+ 

binding domain, two adjacent CUB domains, and a catalytic domain that is highly 

homologous to astacin.  In particular, the EGF-Ca2+ domain is located between the 
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catalytic domain and the proposed regulatory CUB sequences.  More often, these EGF-

Ca2+ domains are located between CUB sequences.  CUB domains have been implicated 

in activity and regulation in BMP-1.9  Astacin family enzymes and serine proteases have 

been implicated in remodeling the pericellular space in sea urchin embryos, which is 

composed of the extracellular matrix and transmembrane proteins.10, 11  Moreover, several 

studies have reported gelatinase and collagenase activities from enzymes located in the 

sea urchin egg and embryo which were characterized as metalloenzymes due to 

inactivation with EDTA and 1, 10-phenanthroline.12-15  

Beside the interesting distribution of astacin-like enzymes across phyla and the 

numerous functional roles of these enzymes, mechanistic questions about these highly 

conserved hydrolases domains still remain to be answered.  Within the metzincin 

superfamily of enzymes, minor differences of active site function have been observed, 

which are likely to account for different substrate specificities.16 In the case of astacin 

as well as BMP-1, tolloid and BP10, a metal-coordinated tyrosine is a rather unusual 

metal-binding motif due to the reduction of Lewis acidity induced by the coordination 

of the negatively charged phenolate to the metal center.17, 18 However, the coordination 

of the Tyr-phenolate does not seem to affect astacin catalysis under neutral conditions.  

The status of the coordinated tyrosine has been proposed to be an inhibitory process in 

the metal centered hydrolysis of peptide bonds.5  A metallotriad mechanism has been 

proposed for astacin and serralysin based on kinetic and spectroscopic studies of the 

native enzymes and their Cu2+ derivatives.5,19  In the proposed metallotriad mechanism, 

the active-site Zn2+ coordinated by three His, a tyrosine, and a water molecule can be 
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activated via detachment of the Tyr-phenolate with a concomitant deprotonation of the 

coordinated water assisted by a glutamate residue.  The metal-bound OH– is able to 

hydrolyze the scissile bond with Zn2+ creating electrostatic strain in the peptide bond by 

interaction with the carbonyl group of the scissile bond.  I discuss in this chapter the 

overexpression and thorough mechanistic study of recombinant BP10, a model system 

for astacin-type developmentally regulated metalloenzymes.  Further analysis of BP10 

will add insight into the catalytic mechanism of members of the astacin family of 

enzymes, and the degree to which the mechanism is conserved among the enzymes 

found in deuterostomes.   

 

II. EXPERIMENTAL 

 

The expression vector pQE30Xa, Ni-NTA agarose, mouse anti-His primary 

antibody were from Qiagen (Valencia, CA), XL1-Blue chemically competent E. coli 

from Invitrogen (Carlsbad, CA), Rosetta Blue chemically competent  E. coli and Factor 

Xa removal kit were from Novagen (San Diego, CA), all primers were from Integrated 

DNA Technologies (Coralville, IA), all modifying and restriction enzymes were from 

Promega (Madison, WI), Eppendorf Perfect plasmid preparation kit was from Eppendorf 

(Westbury, NY), BM purple phosphatase substrate was from Roche (Indianapolis, IN), 

EDTA, ZnCl2, Cu(NO3), Ca(NO3)2, glycerol, ninhydrin, guanidine hydrocholoride, 

bovine serum albumin, sodium dodecyl sulfate, Triton X-100, Tween 20, imidazole, 

NaH2PO4, Na2HPO4, Tris-HCl, acrylamide, bis-acrylamide, TEMED, ammonium 
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persulfate, NaN3, dimethyl sulfoxide (Me2SO), sodium citrate, acetic acid, guanidine 

hydrochloride, and propanol were from Fisher (Swanee, GA),  Type A porcine gelatin 

300 bloom, N-benzoyl-arginine-p-nitroanilide (BAPNA), urea, isopropyl-β-

thiogalactopyronoside (IPTG), phenylmethyl sulfonyl fluoride (PMSF), benzamidine, 

urea, lysozyme, bicinchoninic acid, arginine-hydroxamate, and HEPES, CAPS, TAPS, 

and MES buffers were from Sigma-Aldrich (St. Louis, MO), 1,10-phenanthroline was 

from Acros (Fairlawn, NJ).  All reagents were of enzyme or molecular biology grade 

when available, all others were reagent grade.  All glassware and plasticware were 

extensively rinsed with EDTA to remove metal contaminants and thoroughly washed 

with 18 MΩ water to remove the chelator.  All buffers contained Chelex resin to remove 

metal contaminants.  All spectrophotometric measurements were performed on a Varian 

CARY 50 Bio-Spectrophotometer equipped with a PCB-150 water Peltier thermostable 

cell holder. 

Overexpression, purification, and refolding of recombinant BP10: The cDNA 

coding for Paracentrotus lividus BP10 cloned into the pBluescript plasmid (pBP10) was 

a generous contribution from Christian Gache and Thierry Lepage (Unité de Biologie 

Cellulaire, Center National de la Recherche Scientifique et Université de Paris VI, Station 

Marine, 06230 Villefranche-sur-Mer, France).  PCR primers coding for both 5’ and 3’ 

regions were designed according to the proposed full length BP10 to subclone the cDNA 

into the pQE30Xa overexpression vector.  The 5’ primer: 5’-PO4-

AAACTAATACTTTCCCTTTCGGGATTG-3’ codes for the first 9 codons in the 

proposed nucleotide sequence in BP10 and is 5’ phosphorylated for blunt-end cloning 
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using the StuI restriction site in pQE30Xa; 3’ primer was designed for cloning into the 

XmaI restriction site 5’-AATTCCCGGGTTAGTTCAGACGAGGATCTC GGGT-3’ 

(bold = extra base pairs for melting temperature optimization, underlined =  XmaI 

restriction site, bold underlined = stop codon).  The PCR product coding for BP10 was 

digested with XmaI and cloned into the pQE30Xa vector.  The BP10 construct was 

transformed into Rosetta Blue competent cells.  The colonies overexpressing recombinant 

BP10 were screened using a colony lift protocol according to Qiagen without 

modifications, where the production of BP10 was monitored using a mouse anti-His tag 

primary antibody.  The active colonies were picked, propagated in liquid media to OD600 

= 0.4.  IPTG was added to a final concentration of 1.0 mM and the culture grown at 30 

°C and 300 rpm for 4.5 hours.  The bacteria containing recombinant BP10 were pelleted 

at 4,000×g at 4 °C and resuspended in cell wall lysis buffer (50.0 mM NaH2PO4, 100.0 

mM NaCl, 10.0 mM imidazole, 2.0 mM benzamidine, 2.0 mM PMSF, pH 8.0) containing 

1.7 mg/mL lysozyme and incubated on ice lightly shaking for 60 minutes, then sonicated 

6 × 10 seconds with 10 second intervals.  The cultures were pelleted at 10,000×g at 4 °C 

for 20 minutes and the inclusion bodies were resuspended in an urea buffer (8.0 M urea, 

10.0 mM Tris, 100.0 mM  NaH2PO4, 1.0 % Triton X-100, 2.0 mM benzamidine, 2.0 mM 

PMSF, pH 8.0) and incubated at 37 °C at 200 rpm for 60 minutes.  The solubilized 

inclusion bodies were pelleted at 10,000×g at 4 °C for 20 minutes, and 1.0 mL of Ni-

NTA agarose was added to the supernatant.  The Ni-NTA slurry was gently shaken at 

room temperature for 45 minutes then added to a gravity fed column and the recombinant 

BP10 eluted using a pH gradient, with buffers containing 6.0 M urea, 10.0 mM Tris, 
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100.0 mM  NaH2PO4, at pH’s 6.3, 5.9, and 4.5.  The recombinant BP10 was completely 

eluted at pH 4.5 and was immediately titrated to pH 7.4 using 0.5 M NaH2PO4.  

Overexpression and purification were monitored on a time-dependent basis using 12.5 % 

SDS-PAGE according to Laemmli and Western blot techniques using the anti-His-tag 

antibody. 

 The concentration of recombinant BP10 was determined using standard BCA 

assay with a BSA standard curve.  The recombinant protein was diluted 40 times by 

volume using 50.0 mM Tris with 50 mM NaCl then dialyzed extensively with several 

changes against phosphate buffered saline (PBS) containing 50 µM ZnCl2 for 48 hours at 

4 °C.  Recombinant BP10 was concentrated either under 18 psi N2 using an YM3 

Amicon membrane or an Amicon Centricon YM3.  Final BP10 concentrations were 

checked using BCA.  The His-tag fusion was removed using a Factor Xa His-tag removal 

kit from Novagen according to instruction.  

 Circular Dichroism (CD) studies: CD spectra of urea-denatured, and folded Zn-

BP10 and Cu-BP10 were collected in PBS using a 0.1 cm cell with a resolution of 0.5 

nm.  All absorbance readings were converted to molar ellepticity and the percent helicity 

and sheet content calculated.  The α-helical content was calculated according to published 

methods.20 

Preparation of the copper derivative of BP10: During the refolding of urea-

denatured BP10, 1.0 mM 1,10-phenanthroline was added to the 50.0 mM Tris 50.0 mM 

NaCl pH 7.5 buffer, then extensively dialyzed against PBS containing 0.5 M guanidine.  

The guanidine-containing buffer was exchanged through dialysis with PBS buffer, and 
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then with PBS containing 50 µM Cu(NO3)2.  Protein concentrations were determined 

with BCA assay. 

Gelatin Zymogram: Gelatin was incorporated into a polyacrylamide gel matrix 

according to standard protocols with modifications to fit current studies as listed below.21  

A volumeof 1.25 mL of 1.4 M Tris at pH 8.8, 0.50 mL of 5.0 mg/mL gelatin solution in 

water, 25.0 µL 10 % (w/v) APS, 200 µL 10% (w/v) SDS, 25.0 µL TEMED, 2.0 mL 

water, and 1.25 mL 30:1 acrylamide:bis-acrylamide were mixed and allowed to 

polymerize in a mini-gel minus a stacking gel.  Several concentrations of BP10 were 

mixed with non reducing gel-loading dye and incubated for 15 minutes at room 

temperature (standard Laemmli protocol minus mercaptoethanol or dithiothreitol22).  

These BP10 samples were loaded into each lane of the gel and run at 200 V and 4 °C 

until the dye front reached the bottom of the plate.  The running buffer did not contain 

SDS.  The gel was washed two times in 0.25 % Triton X-100 for 15 minutes with gentle 

shaking, then incubated for 10 hours in 50.0 mM Tris pH 7.50, 1.0 µM ZnCl2 0.5% 

Triton X-100, 0.02 % NaN3, and 2.0 mM CaCl2.  After ten hours the gels were stained 

with 0.1% Coomassie brilliant blue in 40% propanol for 1.0 hour.  The gel was destained 

in a 7% acetic acid solution to reveal the digestion, and then photographed on a light 

table with a digital camera. The enzyme with gelatinase activity is shown as unstained 

bands. 

Gelatinase Assay: The gelatinase activity of recombinant BP10 was monitored 

using a detection method for α- amino groups with ninhydrin as an indicator of peptide 

hydrolysis according to a standard protocol with modifications to fit current studies as 
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described below.23  A 5.0 mg/mL gelatin solution was prepared in H2O and heated to 55 

°C for 15 minutes until completely dissolved.  A ninhydrin detection solution was 

prepared by mixing 9.0 mL glycerol, 3.0 mL of 0.5 M sodium citrate at pH 5.50, and 3.75 

mL of 1.0% (w/v) ninhydrin solution in 0.5 M sodium citrate buffer.  Gelatin and 1.0 µM 

BP10 were mixed in PBS and incubated at room temperature.  A 50.0 µL sample was 

taken from the reaction at several time points and mixed with 950 µL of ninhydrin 

detection solution then boiled for 12.0 minutes.  The absorbance at 570 nm was 

determined using a sample containing undigested stock gelatin (the same gelatin used for 

the experiment, incubated under the same conditions minus BP10) mixed with the same 

detection assay as the blank.  The first order rate constant kobs was determined from an 

exponential curve fit.  The molar absorptivity of Ruhemann’s purple (ε570 = 22,000 

 M–1cm–1)24 also allowed for monitoring the substrate dependent hydrolysis of gelatin.  

Several dilutions of a 10.0 mg/mL stock solution of gelatin were used according to the 

aforementioned protocol and rates were fitted as a function of substrate concentration 

according to the Michaelis-Menten equation, yielding kcat and Km parameters. 

Hydrolysis of BAPNA by Zn-BP10 and Cu-BP10: BAPNA stock solutions were 

made in Me2SO and then diluted with 50.0 mM HEPES 50.0 mM NaCl pH 7.50.  Less 

than 2% Me2SO by volume was present in each assay and found not to interfere with 

kinetic measurements.  Several concentration of BAPNA were incubated with 2.17 µM 

BP10 and rates determined colorimetrically from the release of the p-nitroaniline product 

(ε405 = 10,150 M–1cm–1).  Kinetic parameters were determined by non-linear fitting to the 

Michaelis-Menten equation. 
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Calcium activation assays: Gelatin was extensively dialyzed against an EDTA 

solution and then extensively dialyzed to remove the chelator.  Calcium was carefully 

titrated under substrate saturation conditions to determine its effect on the hydrolysis of 

gelatin and BAPNA.  Once saturating concentrations of calcium were determined, new 

kinetic parameters were obtained using sufficient (1.0 mM) calcium in all buffers. 

Inhibition studies: the effect of two inhibitors, 1,10-phenanthroline (OP) and 

arginine-hydroxamate (Arg-NHOH) toward the hydrolysis of BAPNA were determined 

by running Michaelis-Menten kinetics under several concentrations of each inhibitor.  

Inhibition constants were determined according to the inhibition patterns for OP and Arg-

NHOH respectively. 

pH profiles: The pH profiles for Zn- and Cu-BP10 catalyses were constructed by 

monitoring gelatin and BAPNA hydrolysis under several different pH’s using 50.0 mM 

buffers containing 50.0 mM NaCl and 1.0 mM CaCl2 .  The following buffers were used: 

acetate (pH 5.0), MES (pH 5.5-6.5), HEPES (pH 7.0-8.0), TAPS (pH 8.5-9.0), CAPS (pH 

9.5-11.0). The pH-dependent kinetic parameters were determined by non-linear fitting 

and pKa values were obtained from fitting the data to a two-ionization process. 

Electronic spectrum of Cu-BP10: The electronic spectrum of a 20.0 µM Cu-BP10 

was monitored from 350 to 800 nm and the tyrosine to copper charge transfer transition 

was observed at 454 nm.  The quenching of this ligand to metal charge transfer transition 

(LMCT) was monitored spectrophotometrically upon addition of Arg-NHOH. 

Homology modeling and substrate docking: The primary sequence of BP10 was 

overlaid over the crystal structure of serralysin (PDB ID 1SAT) using BioCAChe 6.1.10 
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(Fujitsu, Beaverton, OR).  The structure was energy-minimized using MM3 and 

molecular dynamics calculations in a simulated water box.  The substrate BAPNA was 

docked into the active site using the standard procedure (PF5) in BioCAChe. 

 

III. RESULTS AND DISCUSSION 

 

Overexpression and refolding of recombinant BP10:  The recombinant enzyme 

was efficiently overexpressed, though it was insoluble and contained within inclusion 

bodies (Figure 7.1, Lane 3).  Urea solubilization proved to be an efficient method for 

extracting the enzyme from inclusion bodies, coupled with a fusion His-tag at the N-

terminus to BP10 that allows for efficient purification using Ni-NTA agarose.  The 

overexpression and purification yields an average of 0.7 mg/mL of total recombinant 

BP10 after a pH gradient elution from the Ni-NTA agarose column (Figure 7.1).  The 

protein overexpression was monitored on a time course using SDS-PAGE and Western 

blotting (Figure 7.2B).  The detection of the His-tag using an anti-His antibody upon 

induction with IPTG proved a sensitive and consistent method for monitoring the 

overexpression of the recombinant protein. 

Upon removal of the chaotropic reagent urea through extensive dialysis, the 

protein was refolded and activity could be monitored after removal of the His-tag.  It was 

determined empirically that a 40 fold dilution was important since at higher 

concentrations the protein coagulates and precipitates out of solution.  Recombinant 

BP10 showed no signs of degradation after refolding (Figure 7.2A).  Upon removal of the  



www.manaraa.com

 249

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

Figure 7.1. SDS-PAGE gel (12.5 %) during purification of recombinant 

BP10.  Lane 1, MW marker; lane 2 total soluble protein after 4 hour 

induction after lysozyme and sonication; lane 3, total protein solubilized 

with 8.0 M urea from inclusion bodies; lane 4, flow-thru unbound proteins 

from Ni-NTA column; lanes 5-6, buffer C wash; lanes 7-9, buffer D at 

pH’s 6.3, 5.9, and 4.5 gradient elution, respectively.  Lane 9 shows a 

homogenous band at 66 kDa, assigned to recombinant BP10. 
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Figure 7.2 (A) SDS-PAGE (12.5 % ) showing intact BP10 after refolding.  

Lane 1, MW marker; lane 2, is total urea solubilized protein; lane3, 

recombinant BP10 after refolding.  (B) Western blot showing the time course 

of overexpression.  Lane 1, uninduced sample; lane 2, 1.0 hr; lane 3, 2.0 hr; 

lane 3, 2.0 hr; lane 4, 3.0 hr; lane 5, 4hr.  (C) Gelatin zymogram showing 

concentration-dependent substrate hydrolysis by BP10; (Lanes 1-5) 0.25µM, 

0.50 µM, 1.0 µM, 1.50 µM , 1.75 µM BP10. 
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His-tag using a Factor Xa removal kit from Novagen, the protein undergoes 

autohydrolysis and remained stable only for a few days at 4 °C.  However, the protein 

fused with the His-tag is stable indefinitely at 4 °C.  Hence, the His-tag was used as an  

efficient method for long-term storage of recombinant BP10 and removed only prior to 

running experiments.   

 CD Spectra of ZnBP10 and CuBP10: The CD spectrum of urea-denatured BP10 

(Figure 3, dotted trace) does not show the random-coil expected in the presence of a high 

concentration of chaotropic reagents.  The CD spectrum of urea-denatured BP10 shows an overall 

β-sheet-shape with blue shifts observed in the minimum and a red shift in the maximum of the 

spectrum. The characteristic minimum at 200 nm for random-coil peptides is not present, with 

only bathochromic shifts resulting in the denaturation of BP10.  This resistance to complete 

denaturation to a random-coil conformation may account for the efficient refolding of BP10 in the 

absence of reducing agents, due to partially formed secondary structures.  The helical content of 

BP10 is 5.8 % which is consistent with the large content of sheet-like structures (i.e. β-barrel) in 

CUB domain-containing proteins.25  According to sequence homology, only the helices present in 

the astacin-domain shoukd be present accounting for the low helical content of BP10.  The CD 

spectra of Zn-BP10 and Cu-BP10 are virtually identical, suggesting no major conformational 

change in the overall structure of the protein due to metal substitution. 

Kinetics of gelatin hydrolysis: Recombinant BP10 was not able to hydrolyze 

casein, a commonly used substrate for endopeptidases.  Porcine gelatin however proved 

to be a good substrate to monitor proteolytic activity of BP10 with gelatin zymograms 

(Figure 7.2C) and a ninhydrin detection protocol (Figures 7.4 and 7.5), establishing the 

proposed role of BP10 as a protease.  The formation of a colored ninhydrin-α-amino acid 
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conjugate with a known molar absorptivity was a convenient method to monitor gelatin 

hydrolysis.  The saturation kinetics can be fit to the Michaelis-Menten equation, to yield  

kcat = 0.013 s–1, Km = 51.3 µM, and the second order rate constant kcat/Km = 253.4 M–1s–1.  

Interestingly, BP10 shows a Ca2+-dependent activation (Figure 7.5, inset) yielding kcat = 

0.77 s–1, Km = 46.5µM, and kcat/Km = 16,740 M–1s–1 at saturating [Ca2+].  Other 

gelatinases found in the sea urchin embryo have shown a Ca2+-dependent activation.26, 27  

However, whether or not the Ca2+ bound to the EGF domain is a cofactor in protein-

protein interaction or signaling is not known for BP10 and cannot be determined in these 

studies.  Further analysis of the rate constants can shed insight into the role of Ca2+ in 

catalysis. The Km values are similar in the presence and absence of Ca2+, while the kcat 

value for the catalysis in the presence of Ca2+ is much larger than in the absence of Ca2+.  

Since Km is defined as (k–1+kcat)/k1, with k1 and k–1 the rate constants for substrate binding 

and dissociating from the enzyme- substrate (ES) complex, a significant increase in kcat 

with a constant Km value in the presence of Ca2+ reflects a smaller dissociation k–1/k1 of 

the ES complex.  This observation reveals that Ca2+ affects BP10 catalysis by enhancing 

substrate binding to the enzyme and by lowering the activation energy (i.e., a larger kcat 

value).  The activation of BP10 by Ca2+ is the first report of the effect of Ca2+ on the 

activity of astacin family metalloproteases, although Ca2+ dependent gelatinases have 

been identified26 in sea urchins; Mg2 + showed no effect in activation of BP10.  BP10 

contains an EGF-Ca2+ domain that could mediate the effect of calcium on catalysis.   
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Elucidation of the role of the EGF domain and Ca2+ on BP10 activity may shed 

interesting insight once similarly functioning and structurally conserved enzymes have 

been characterized across all phyla. 

The kinetic parameters for Zn-BP10 toward gelatin hydrolysis were determined 
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between pH’s 4.5-11.0.  Plots of kcat and kcat/Km against pH exhibit bell shaped curves 

(Figure 7.6 A,D) indicating the presence of two ionizable groups in the catalytic 

mechanism of ZnBP10 and can be fitted to Equation (1).  The two ionization constants 

from the kcat vs. pH profile yield pKa1 = 5.94 and pKa2 = 10.2 which can be assigned to 

the deprotonation of a Zn-bound water and to the coordinated tyrosine respectively upon 

substrate binding which is consistent with previous reports for serralysin.5  The role of 

the coordinated Tyr is further addressed below.   

Kinetics of BAPNA hydrolysis:  The synthetic substrate BAPNA is a good 

substrate for BP10.  This activity was previously observed for serralysin and is the only 

synthetic tripeptide of a series of di- and tripeptide mimics, including glycine-, alanine-, 

valine-, leucine-, glutamate-, lysine-, arginine-, trialanine-, and succinyl-trialanine-p-

nitroanilide that was hydrolyzed by BP10.  The kinetics of BAPNA hydrolysis (Figure 

7.7) fit Michaelis-Menten kinetics to yield kcat = 0.079 s–1 Km = 0.66 mM and kcat/Km = 

120 M–1s–1 in the presence of Ca2+, and kcat = 1.83 ×10–3 s–1, Km = 1.55 mM and kcat/Km = 

1.18 M–1s–1 in the absence of Ca2+ (Figure 7.7 B). Like in gelatin hydrolysis by BP10,  

 

C 
  1         2          3          4        5 

C 



www.manaraa.com

 254

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

λ nm

190 200 210 220 230 240

[θ
]  (

de
g 

x 
cm

2  
x 

dm
ol

-1
)

-3000

-2000

-1000

0

1000

2000

 

Figure 7.3. CD spectra of Zn-BP10 in PBS with 8.0 M urea pH 7.4 (dotted 

trace), and renatured Zn- (solid trace) and Cu-BP10 in PBS pH 7.4 (dashed 

trace). 
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 Figure 7.4. First order kinetics of gelatin hydrolysis by Zn2+ (•) and Cu2+ (ο) 

derivatives of BP10 in the presence of 1.0 mM Ca2+ at pH 7.5.  The solid traces are the 

best fit to a pseudo-first-order rate law, which affords the rate constant kobs for each 

derivative. 

 



www.manaraa.com

 256

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[gelatin] mM
0.0 0.1 0.2 0.3 0.4

ra
te

 m
M

/s

0.0

4.0e-6

8.0e-6

1.2e-5

[Ca2+] mM
0.001 0.01 0.1

V m
ax

 (m
M

/s
)

0

2e-4

4e-4

6e-4

8e-4

  
 
 
Figure 7.5. Gelatin hydrolysis by 1.0 µM ZnBP10 in 50.0 mM HEPES pH 7.5, 50 

mM NaCl, and 1.0 mM Ca(NO3)2.  The solid line is the best fit to the Michaelis-

Menten equation.  The inset shows a Ca2+-dependent activation upon titration of 

Ca2+ to 60 µM ZnBP10.  The solid line in the inset is the best fit to a loose-binding 

equilibrium. 



www.manaraa.com

 257

Ca2+ activates BP10 by lowering the activation energy and enhancing substrate binding as 

reflected in the rate constants and discussed above.  The higher kcat and lower Km for 

gelatin hydrolysis than BAPNA also indicate a higher affinity of gelatin than BAPNA 

binding to BP10, reflecting the endopeptidases nature of BP10. 

The pH profile for BAPNA hydrolysis by Zn-BP10 (Figure 7.6 B,E) compares 

well with that of gelatin, showing a bell shaped curve that can be fitted to Equation (1).  

The ionization constants also fall within experimental range, yielding pKa1 = 5.39 and 

pKa2 = 9.18 for the first order rate constant kcat, and pKa1 = 5.83 and pKa2 = 8.98 for 

kcat/Km. 

 The inhibition of Zn-BP10 by the metal chelator 1,10-OP toward the hydrolysis of 

BAPNA at pH 7.5 shows a noncompetitive pattern which is consistent with metal 

removal from metalloenzymes and gives Ki = 7.85 µM (Figure 7.8).  The mixed-type 

inhibition by Arg-NHOH (Fig. 7.8 B) is a good indication of a combination of specific 

interaction along with metal chelation afforded by the hydroxamate moiety.  The 

inhibition pattern for Arg-NHOH can be fitted to Equations (2) and (3) to yield Kic = 0.20 

mM and Kiu = 0.90 mM, representing the specific inhibition constant for the dissociation 

of the enzyme-inhibitor complex (EI) and the catalytic inhibition constant for the 

dissociation of the inhibitor from the enzyme-substrate-inhibitor complex (ESI), 

respectively.28 
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Mechanistic studies of the copper derivative of BP10 (Cu-BP10): The 

spectroscopically inert Zn2+ ion found in astacins and several other metallohydrolases 

offers a poor probe for the metal coordination environment in the active site.  Thus 

spectroscopically active metal derivatives of metalloenzymes can offer detailed insight 

into the catalytic mechanisms and structure within the active site.29  The formation of the 

Cu-BP10 derivative is evident by the intense Tyr-to-Cu2+ LMCT at 454 nm, analogous to 

that in Cu2+-astacin and Cu2+-serralysin.  The activity of the Cu2+-substituted BP10 (Cu-

BP10) is considerably higher than Zn-BP10 in terms of kcat (0.76 s–1) and kcat/Km (5430 

M–1 s–1) toward the hydrolysis of BAPNA, reflecting a ~960 % increase in activity in 

terms kcat and ~485 % in terms of kcat/Km.  This is a rather unusual characteristic of metal 

derivatives of Zn enzymes,29 since most Cu2+ derivatives of Zn2+-enzymes are inactive.  

Increased activity of a Cu2+ derivative has been observed in serralysin, another astacin 

family member able to hydrolyze gelatin and BAPNA.5 Moreover, the overall proteolytic 

activity of Cu-BP10 toward gelatin hydrolysis is ~20% of that of the Zn derivative, which 

is also greater than many metal-substituted metallo-hydrolases previously reported.29   

 Metal-centered hydrolysis relies on the Lewis acidity of metal ions, which can 

lower the pKa of metal-bound water molecules by greater than 107 fold, generating a 

metal-hydroxide at neutral pH that can perform nucleophillic attack on the scissile 

peptide bond.  The versatility of metal-centered hydrolysis has been widely demonstrated 

in synthetic Cu2+ model systems which show proficient peptidase activities and 

phosphodiesterase activities.30-32 Conversely, Cu2+ derivatives of metallohydrolases are 

generally inactive or exhibit considerably lower activities29, 33 despite the comparatively 
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high Lewis acidity of Cu2+.  Few examples of metal-substituted metallohydrolases in 

literature show considerable activation, with serralysin5 and astacin34 being the most 

significant representatives of metal-substituted metallohydrolases that are activated by 

Cu2+.  The poor activation of metallohydrolases observed in Cu2+ derivatives may be 

attributed to Jahn-Teller distortion which can reduce the nucleophilicty of the metal 

bound water if positioned in the axial coordination of the metal center.  The ability to use 

Cu2+ as a viable probe for mechanistic studies is characteristic for the astacin family of 

metalloenzymes.  It is noteworthy that the metal ligands found in the astacin family are a 

unique example of metal-phenolate coordination in metallohydrolases wherein the 

coordinated Tyr plays a “switch-off” role in catalysis5, 19 and may be involved in the 

unique Cu2+-activation observed in astacin family enzymes thus far characterized. The 

analysis of BP10 is consistent with this mechanism of hydrolysis discussed below. 

From analysis of kinetic parameters kcat and Km, there is an obvious requirement 

of the metal center for catalysis.  Km value for the hydrolysis of BAPNA by Cu-BP10 in 

the presence of Ca2+ (Km = 1.32 mM) is not significantly different (200 %)from the Zn 

form (0.66mM) when compared to the 960 % increase in kcat of Cu-BP10 compared to the 

native Zn-BP10.  Once again, as previously discussed, a small change in Km concomitant 

with a large increase in kcat suggests a lowering of the activation energy and an increase 

in the affinity for the substrate in the ES complex.  The hyperactive Cu-BP10 suggests 

that the metal center must be involved in catalysis, most importantly in the turnover of 

the ES complexes to the product with a high kcat value.   
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Figure 7.6. pH dependence of kcat and kcat/Km for the hydrolysis of 

gelatin by Zn-BP10 (A, D), hydrolysis of BAPNA by Zn-BP10 (B, 

E). The solid traces are the best fit to the equation 

( )( )]H[1][H1 21

lim
++ ++

=
aa KK

k
k  to afford the two pKa values reported 

in the text. 
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Figure 7.7.  (A) Hydrolysis of L-BAPNA by Zn-BP10 in 50.0 mM HEPES, pH 7.5 in 

the presence of 50mM NaCl, and 1.0 mM Ca(NO3)2.  (B) Same as in (A) in the 

absence of Ca2+. 
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 Because of the low concentrations available for BP10 (above ~ 70 µM the protein 

precipitates), electronic spectra of the Cu2+ derivative was used to study the metal 

coordination environment in the active site.  Upon substitution of Cu2+ during the 

refolding protocols, a 20 µM sample can show significant ligand to metal charge transfer 

transition (LMCT) in the visible range.  Unfortunately, the low energy d-d transition 

bands for tetragonally distorted octahedral Cu2+ have very low molar absorptivity values 

(in the order of 100 M–1cm–1) and are too noisy to distinguish in the spectrum (Figure 

7.9).  The large LMCT (ε = 1220 M–1cm–1) observed at 454 nm are due to the tyrosinate-

to-Cu2+ charge transfer transition as determined previously using Cu-astacin.34  This 

observation serves as support of EPR studies of Cu-astacin where g⎟⎟  > g⊥ spectral 

features suggests that the metal center is tetragonaly distorted with a weak axial ligand.19  

This is further proof of a similar astacin-like active site structure for BP10. 

 The inhibition of Zn2+ and Cu2+ derivatives of BP10 by Arg-NHOH at pH 7.50 

(Figure 7.8, 7.10) displays a mixed type pattern as observed in serralysin,19 wherein the 

inhibitor is able to bind both the enzyme and the ES complex.  The mixed type inhibition 

yields two different inhibition constants for the dissociation of the inhibitor form the EI 

and EIS complexes, yielding Kic = 1.58 µM and Kiu = 3.93 µM.  The significantly 

different inhibition constants for Zn-BP10 and Cu-BP10 are good evidence that the 

inhibitor binds directly to the metal center in the active site.  Mixed-type inhibition is 

often a good indicator of an alternative site for inhibitor and substrate binding in the ES 

complex to afford an ES-I and ES-S ternary complexes.28 
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Figure 7.8. Inhibition of Zn-BP10 toward L-BAPNA hydrolysis in 50.0 mM 

HEPES pH 7.5, 50.0 mM, NaCl, 1.0 mM Ca(NO3)2 by 1,10 phenanthroline (A) 

and by Arg-NHOH (B).  Inhibitor concentrations are as follows from bottom to 

top: (A) 0, 0.5, 1.0, and 2.0 mM; (B) 0, 0.25, 0.5, and 1.0 mM.  
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The influence on the LMCT centered at 454 nm can serve as an indicator for inhibitor 

binding directly to the metal center (Figure 7.9).  The quenching of the LMCT band upon 

inhibitor binding indicates that the metal-coordinated Tyr is detached upon inhibitor 

binding, a phenomenon observed in the studies of Cu-astacin and Cu-serralysin.5  The 

gradual decrease of the LMCT intensity upon inhibitor binding can be described 

according to Scheme (1), assuming that the binding of one equivalent of inhibitor per 

active site metal results in concomitant detachment of the coordinated Tyr. 

BP10(bound Tyr) +Arg-NHOH                Arg-NHOH-BP10 + detached Tyr 

When fitting the quenching of the Tyr-to-Cu2+ charge transfer with respect to inhibitor 

concentration according to Scheme (1) without including [H+] gives an apparent 

association constant of 2.9 ×103 M–1 for Arg-NHOH binding to Cu-BP10 at pH 8.5 

(Figure 7.9, inset).  The specific inhibition constant Kic for the inhibition of Cu-BP10 by 

Arg-NHOH at pH 7.5 (Figure 7.10) can be converted into an apparent association 

constant of 6.33 × 105 M–1, greater than that at pH 8.5, indicating that the protonation of 

the metal-coordinated Tyr at lower pH assists the binding of Arg-NHOH. 

 The kinetic parameters Km, kcat, and kcat/Km for the hydrolysis of BAPNA by Cu-

BP10 were determined between pH’s 5.0-9.5 and exhibit bell shaped curves that can be 

fitted to Equation (1) to give pKa1 = 5.48 and pKa2 = 7.98 for the pH dependence of kcat 

and pKa1 = 5.83 and pKa2 = 7.99 for the pH dependence of kcat/Km (Figure 7.11). This 

describes a two ionization mechanism for the catalytic turnover of the substrate by BP10.  

The similar crystal structures of different metal derivatives of astacin34  suggest that the  
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Figure 7.9. Optical titration of Arg-NHOH to Cu-BP10.  The inset shows the 

decrease in the change of the molar absorptivity (∆ε) as a function [Arg-NHOH].  
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Figure 7.10. Inhibition of Cu-BP10 by Arg-NHOH.  Inhibitor concentrations are as 

follows from bottom to top: 0, 1.5, and 3.0 µM. 
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Figure 7.11. pH profile of BAPNA hydrolysis by Cu-BP10.  
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coordination sphere of Zn2+ and Cu2+ derivatives of BP10 would be similar.  This would 

possibly attribute the different ionization constants pKa1 and pKa2 for each metal 

derivative to the Lewis acidity of each metal, but not due to different metal environments 

within the active site of BP10.  The low pKa2 approaching pKa1 for Cu-BP10 causes a 

considerable decrease in the catalytic efficiency, from the intrinsic value of 851 M–1s–1 to 

the maximum fitted value of 580 M–1s–1 which means that only 64% of Cu-BP10 is active 

at pH 7.0.  Conversely the intrinsic and fitted values for kcat/Km of Zn-BP10 differ only 

slightly with the intrinsic value of 119.7 M–1s–1 and the fitted value of 125.1 M–1s–1.  This 

is consistent with the coordination sphere of the two metal derivatives of BP10 being 

similar, and suggest that the differences in ionization constants is due to the effects on the 

Lewis acidity of each metal. 

 Ionizable groups must be coordinated or in very close proximity of the metal in 

the active site of an enzyme to be influenced by the metal ion, as reflected by a change of 

pKa values.  In astacin the crystal structure suggests that Tyr and Glu as well as a water 

molecule are bound to the metal center.  This “metallotriad” framework of  

M––OH…–OOC is similar to the “catalytic triad” of serine proteases Ser–OH…His …–

OOC, where the water nucleophile is sandwiched by a Lewis acid (the active site metal) 

and a Lewis base (the carboxylate in Glu) to serve in a general-acid/general-base catalytic 

mechanism.   This metal-centered triad has also been confirmed in other 

metallohydrolases including serralysin,5 thermolysin,35 matrilysin,36 and 

carboxypeptidase A.37 We utilized the Cu2+ derivative of BP10 to determine if a similar 

mechanism is utilized by this enzyme. 
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 The 454 nm LMCT band does not show full intensity at neutral and lower pH 

values (~150 M–1cm–1 at pH 6.0 versus 1255 M–1cm–1 at pH 8.5), indicating that they are 

pH dependent.  The Tyr(phenolate)-to-Cu2+ CT in Cu-BP10 changes with pH in a 

sigmoidal manner (Figure 7.12).  Thus, the change can be described by a single 

ionization process5 for the ionization of the coordinated Tyr249 and simultaneous binding 

to the active site Cu2+ to give εu = 109 and εb = 1182 M–1cm–1 and a pKa value of 6.87 for 

the deprotonation of Tyr249, where εu and εb are the molar absorptivities due to the 

background and the Cu-bound Tyr249. However, the data do not fit well to a single-

ionization model (Fig. 7.10, dotted trace) and the pKa value of 6.86 is not a close match 

to the kcat/Km pKa2 value of 7.99. 

 Since proposed models of astacin-type enzymes show that the Tyr side chain is H-

bonded to the metal-coordinated water, the deprotonation of the phenolate moiety and 

subsequent binding to the active-site metal should be affected by the ionization of the 

coordinated water and reflected in the CT intensities.  The data is much better fitted to a 

two-ionization process described previously5 with a fixed pKa1 = 5.83 (from the  

kcat/Km pH profile of Cu-BP10, (Figure 7.11B) to afford pKa2 = 7.42 ± 0.15, εu = 26 ± 15, 

εW = 591 ± 33, and εb = 1425 M–1cm–1 (Figure 7.10 solid trace).  Although the data can be 

reasonably fitted to a two-ionization process, the similar λmax throughout the titration 

suggests that it is likely to have only one species that affords the LMCT instead of two.  

Taken together our data is most consistently described as a single species ionization 

involved in the LMCT, assigned to a Tyr249 to Cu2+ charge transfer.  Herein, the increase 

in the LMCT due to Tyr binding corresponds to the decrease in activity, reflecting the  
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 Figure 7.12. The change in intensity of the LMCT transition of Cu-BP10 at 454 nm 

as a function of pH.  The data is much better fitted to a two ionization processes (solid 

trace) than to a single ionization process (dashed trace).  The dashed bell-shaped curve 

is the best fit for the kcat/Km vs. pH profile of CuBP10 from Figure 7.11B. 
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inhibiting role of Tyr249 and its role as a “catalytic switch”. 

Homology Modeling: The catalytic domain of the astacin family of 

metallohydrolases is highly conserved across all sequenced enzymes.  Because BP10 and 

serralysin are both able to cleave BAPNA effectively, homology modeling by the use of 

serralysin as the template for the catalytic domain and substrate binding was performed  

(Figure 7.11).  Molecular mechanics calculations (MM3) and molecular dynamics were 

used to arrive at the final structure which shows Tyr249 within H-bonding distance of the 

metal-bound water and to the guanidine group of arginine in BAPNA.  A predominant 

hydrophobic interaction is also observed between Trp165 and the benzoyl group of the 

substrate.  The p-nitroanilide moiety of BAPNA is exposed to solvent which likely 

facilitates product release after the cleavage of the substrate. 

 

IV. CONCLUDING REMARKS  

 

BP10 is the first member of the tolloid-like enzymes to be characterized with 

extensive kinetics and spectroscopic methods.  The studies show that BP10 is a 

metallohydrolase with a hydrolytic mechanism consistent with other astacin-like 

proteases.  The influence of Ca2+ toward the catalysis of gelatin and BAPNA by BP10 

offers the important insight that Ca2+-signaling can serve an important function in 

regulation of the proteolytic events in embryogenesis.  The studies of the Cu-derivative 

support the metallotriad mechanism previously proposed for astacin and serralysin, with 

the involvement of the metal bound Tyr residue in catalysis.  Through homology  
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Figure 7.13. Stereo view of the BP10 active site based on the crystal structure of 

serralysin (PDB ID 1SAT) as the homology template with the use of molecular 

mechanics (MM3) and molecular dynamics calculations.  The substrate BAPNA 

(ball-and-stick structure) is docked into the active site, with its carbonyl of the 

scissile bond pointing toward the active site metal (larger sphere), the benzoyl 

moiety of BAPNA interacting with Trp165, and the guanidinium group of the Arg 

moiety interacting with Tyr249. 
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modeling we observed the conserved astacin catalytic motif and that the active-site Tyr 

may not only play a role in substrate binding via detachment from the metal during a  

 “resting” state, but also may assist in stabilization of the ES complex by directly 

interacting with the guanidine group of BAPNA via a charge interaction or H-bonding.   

The understanding of the detailed mechanism of peptide hydrolysis by BP10 and 

revealing of the substrate specificity in vivo in future studies are important first steps in 

unraveling the proteolytic events during sea urchin embryogenesis. 
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